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Defining Electrofacies from Logs and Core Data:
Principles of Supervised and Non-Supervised Approaches

Gaél Lecante*, Pierre-Yves Dequirez** and Pascal Lavest*
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Abstract: The definition of log facies from data is one of the keys to successful formation
wireline logs and their calibration against core evaluation and rock-typing. It allows to derive the

input data that is essential for building accurate
* Beicip — Franlab, ** [FP 3D geocellular reservoir models.
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*  Multi-variate statistics provide the right tools that
allow:

* to analyze wireline logs and core data;

s 1o predict electrofacies from a large number of
wells and using complete sets of logs;

« to calibrate the detected log facies against core
data;

= o predict the log facies at the non-cored intervals
and non-cored wells;

* to quantify the uncertainty of the log facies
determination.

This paper, which is based on a real case study,
describes two basic approaches for determining and
predicting electrofacies, based on multi-variate
statistical analysis:

e A non-supervised approach, that is purely based
on multi-variate statistical analysis of the wireline
logs, regardless of the core data.

* A supervised approach, that integrates wireline
logs with core data.

As a second step, it describes how these two basic-
approaches can be combined to identify and predict
optimal log facies at cored and non-cored wells, in
an integrated and robust worlkflow:

«  Multi-variate density function interpretation and
cluster identification

o Cluster interpretation and electrofacies
definition, using core data

« Electrofacies prediction at the non-cored
intervals and non-cored wells.

INTRODUCTION
What is an Electrofacies?

Well data are a set of z values. A set of log
measurements is associated to each z value. Data
can be represented as shown in figure 1.

Samples are in a p-variable hyperspace, in
which each axis is linked to a tool measurement
(Fig. 2).

An electrofacies is nothing but a cluster of z
values in the space. Its geological meaning is a
priori known or it must be interpreted (from core
data for instance).
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Fig. 1. Matrix of the data. (xij) = log j measurement at the point i.
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Fig. 2. Display of the samples in the log hyperspace.

The electrofacies gathering depends closely on
the variables (logs) in use. The electrofacies
definition and prediction presented in this paper
combines a statistical analysis with the standard
geological interpretation of logs (Fig.3). Logs and
core data are both taken into account in order to
generate facies logs that honour both pieces of
information.

] Electrofacies 1
Electrofacies 3

GR

Electrofacies 2

NPHI

RHOB

Fig. 3. Gathering into electrofacies.
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Supervised or Unsupervised Approach?

Two different classification methods can be
performed: a supervised and unsupervised. The
supervised approach takes into account a priori
data given by the geologist which constitute the
“training sample”. The number of classes and their
log characteristics are determined by these data.
When running unsupervised approach, the training
samples are defined from the interpretation of the
density function calculated on log data. The
number of classes and the corresponding
characteristic samples are decided and selected at
this step. Their geological meaning will be
interpreted from their location in cross-plots and/
or from core data.

In both cases, points not yet belonging to any
class will be next assigned to a class according to
a classification function created from the training
sample.
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Fig. 4. Composite log

The two methods can be run independently or
be linked together:

e electrofacies detected during an unsupervised
approach can constitute a training population to
add as a priori information to a supervised study;

= the geologist can add a priori supplementary
class to these that have been interpreted during
the unsupervised approach.

The study we use for showing the electrofacies
definition methodology study takes place in a
fluvio-deltaic environment. Figures 4 and 5
display the composite log and some classical
cross-plots.

The Unsupervised Approach

The unsupervised approach can be divided into
3 important steps.

° density function estimation,

* density function interpretation: number of
classes, creation of the training sample,

* data points assignment.

Density Function Estimation

An electrofacies is nothing but a gathering of
points together in the log hyperspace. Electrofacies
classes constitute a set of points separated by areas
with low density of points. By detecting and
analyzing the variation of the density in the log
hyperspace, it is possible to detect these different
sets. The number of density peaks defines the
number of classes. Points highlighted in these
zones of high density correspond to the most
typical samples of each class.

The probability density function (PDF)
describes the distribution of a variable and gives
its associated probabilities. In a univariate case,
the PDF is often described in a discrete manner
with a histogram. However this histogram is not a
good density function estimator. It does not give
the number of samples for a particular value; it
only gives the number of samples that fall into an
interval.

In a p-dimension space (corresponding to the
p logs which are used), the PDF is estimated using
KNN (K nearest neighbors) or kernel techniques
(Gaussian, Epanechnikov, etc.). If only one
variable is used, the density function is a curve
(that can be approximated by smoothing a
histogram). If two variables are used, the density
function is a surface with valleys and hills like a
topographic surface. When more variables are
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Fig. 5. Cross-plots

used, it is not possible to represent the PDF,
however, we can analyze the peaks of the PDF
using Kittler algorithm!"l. This technique is called
the mapping of the PDF or PDF mode mapping
(Fig. 6):

« A random point is chosen.

* A neighbouring is defined in order to calculate
the slope in all directions.

* The next point is chosen from nearby in order
to move as far uphill on the PDF as possible
(i.e. the greatest slope is used)

* The process goes on until reaching a density
peak.

= From this, the following points are selected in
order to ensure that one moves as little downhill
as possible until a minimum of the PDE.

This gives a path that climbs steeply uphill to
a mode and then goes down slowly, visiting all
points. The neighbouring, called « Mode mapping
parameter », is the smoothing parameter to choose.
If it is too big, you loose information about density.
If it is too small, all the details are mapped, even
the small ones, introducing noise in the
interpretation.

Assignment of Samples to a Class:
the Classification Method

The next step of the classification aims at
classifying all log samples. At this point statistical
techniques such as discriminant analysis or pattern
recognition can be used. In the methodology
presented in this paper, the discriminant analysis
is used. It is fast, robust and has shown an
unmatched efficiency and reliability on any type
of environment (clastics and carbonates).

In a discriminant analysis, the probability of
belonging to a class is computed for each sample.
The point is next allocated to its most probable
belonging class. This calculation uses the well-
known Bayes formula. Various kinds of
discriminant functions can be used for classifying
the samples:

* The linear hypothesis: the covariance of each
class is assumed to be the same,

* The quadratic hypothesis: for each class a
distinct covariance is calculated from the
training sample.

« Non-parametric hypotheses can also be made.
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Fig. 6. Density function mapping

In such a case, the probability laws for each
class have to be estimated using Kernel or K
Nearest Neighbors methods. These laws are
nothing but the PDF of each class.

Obviously, the less hypothesis on the model is
assumed, the more closer we are to the reality. Ideally,
the non parametric approach is the most promising,
but with this approach, we need a lot of points in the
training sample to obtain a reliable result

Once the assignment method is chosen, the
training samples are stored as non allocated points
(Fig. 7a & b). The method efficiency can be evaluated
by computing the percentage of well-assigned
samples (i.e. which are allocated to their actual class).

In the example displayed on figure 8, all
samples are correctly assigned, whatever the
method is chosen. However, this method is it
underestimates the error rate because observations
to evaluate the classification results are the same
to build the classification rules.

For this reason, a second series of validations
is carried out. A sample is taken out of the training
sample before building the classification rules. It
is re-allocated using this rule afterward. This is a
more pessimistic but realistic measure of the
classification efficiency (Fig. 9).

In the case displayed on figure 9, all the
samples of the class 6 are not correctly assigned
using the non parametric method. Quadratic and
linear hypothesis give good results. Cross
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Fig. 9. Cross validation results.

validation is interesting, in the linear and quadratic e &l

case, only if the number of points is not too large.
Otherwise, if you remove a sample from a lot of
points, it has a little impact on statistical methods
using only mean and covariance matrices.
However, in a non parametric case, this diagram
is always interesting to be consulted because
removing even one point could affect intra-class
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The results, obtained with the linear hypothesis
are displayed (Fig. 10a and b).
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At this point, the probability of good
assignment is also calculated. It quantifies the
uncertainties and controls the quality of the newly
built lithologic column. In figure 11a, 10% of the
samples are allocated to a class with a very small
probability. These samples are outlying as we can
see on the cross-plots on which they are
highlighted as triangles (Fig. 12).

Supervised Approach

In a supervised approach, we have a priori
training sample coming from a geologist prior
interpretation. The number of classes is given, it
is a part of the geological a priori. The
classification function is created from this a priori
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Fig. 11. Highlighting points with a not reliable assignment.
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Fig. 12. Training samples displayed on cross-plots.

training sample. All the points will be assigned to
a class using this classification function,

Everything is known since we have already
discussed the discriminant analysis in the frame
of the unsupervised interpretation: we have to
choose the hypothesis (linear, quadratic or non
parametric), in order to run the classification and
check the results.

The Training Samples

In this case, we have to highlight a class of coal
not discriminated during the unsupervised approach
(Figs. 7a and b). In fact, a class can be identified if it
forms a statistical population. Scattered points in the
log hyperspace cannot be detected using a
unsupervised approach, In the case of a supervised
approach, samples with characteristics close to coal
will be assigned to a coal class, which does not
correspond to the real situation. As a consequence,
the set of training sample is very important. The
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confidence in the results depends on the confidence
in the training samples.

Choosing the Discriminant Method

In the case presented here, the cross validation
shows that the linear method does not allow a
reliable identification of the coals. We cannot use
the non-parametric method either, as we only have
205 training samples (20 to 50 per class), which
is not enough. At last, if we use the quadratic
assumption, almost 70% of anonymous samples
were classified into the class of coals. This is not
good but foreseeable, as Coals have very scattered
log responses.

The quadratic method computes each class
covariance from the training sample. If sample
characteristics are very dissimilar, the class
covariance will be very high and the attraction of
this class will be very important. In our particular
case, we want to highlight samples with no typical
features. The quadratic assumption is not reasonable.

Consequently, we have to use the linear
hypothesis, even though we know that the
discrimination may be not as reliable as expected.
The obtained results (Fig. 13) are assigned to the
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Fig. 13. Samples distribution and probability of good assignment.

different classes in a way that is consistent with
the geological expectation.

As a result, an electrofacies log, calibrated to
the geological model, are obtained. They have to
be compared to the unsupervised log result.

Supervised or Unsupervised Approach?
Both of Them Can be Used Together

Even if you have an a priori information, both
approaches have to be performed, to ensure a
better control on the predicted facies. The
unsupervised approach increases your knowledge
about the sample distribution in the log
hyperspace. The convergence in results of the two
approaches is a way to confirm that the geological
a priori used in the supervised method can be
detected on the available logs.

Both of Them Can be Linked

In our particular case, the unsupervised
approach did not identify the coals, which are very
important from the geologist point of view.
Conversely, the supervised approach did not take
into account some classes that appear on the
density function.

Samples allocated as coals can be used as
constrains to unsupervised approach. The samples
corresponding to coals can be picked on the PDF
(Fig. 14).

The coals are now a part of our training sample,
used in the unsupervised approach. The
classification using a linear rule gives the results
that we can see in figure 15.

The coals seem accurately identified. The seven
classes discriminated during the unsupervised
approach are consistent with the a priori
information.

Automatic Interpretation of the Other Wells of
the Field

The well that has been studied first is now used
as the reference. The obtained classifier allows an
automatic interpretation of all wells drilled in a
similar geological environment in this reservoir.
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Fig. 15. The coals are identified.

If we consider a second well, where the spectral
components of Gamma Ray was not acquired, the
previous classifying rule cannot be applied
directly. A new one has to be defined using all
available logs as Nphi, Rhob and GR.

The new rule is instantly created using the
unsupervised application with the training sample
selected previously. The newly built classifying
function allows the assignment of the samples of
each well to classes.

The multi-variate statistical approach for
accurate electrofacies determination at wells,
within the non cored intervals and at the non cored
wells is extremely robust and easy-to-use, and has
been applied on a large number of studies, for
both clastic and carbonate reservoirs. Thus, it is
also used as a starting point of rock-typing, as it
is far easier to infer rock-types from calibrated
electrofacies at wells, than from raw wireline
logs.
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