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The Role of Pore Connection in

Hydraulic Conductance of Sedimentary Rocks
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Abstract: The inner structure of sedimentary
rocks is studied as a system of interconnected
pores. A regular cubic network is considered for
the pores and the channels connecting them with
the latter being randomly open or closed. The
problem of whether or not there is a hydraulic
connection between two parallel faces of a cubic
rock sample, depending upon the ratio of open
edges to all the possible edges, is studied.

Recursive solution for the described random
network problem is given. The recursive solution
in two dimensions is simulated on the computer
as the simplest three-dimensional case.

*Petroleum Research Centre, P.O. Box 0431, Tripoli, Libya

Analvsis of the probability of distributions gives
a vivid, quantitative pictitre about the role of pore
connection in hvdraulic movement. As a rule of
thumb for rocks with the above cubic structure,
this role can be described as follows: if only '/, of
the channels are open the rocks are not perine-
able but if '/, of the channels are open the rocks
are permeable.

INTRODUCTION

A porous medium only allows the displacement
of fluids to the extent that its pores are
interconnected. (Perrodon, 1983).



2 G. Szigeti

The percentage of the channels which should
be open (or closed) to allow the rocks permeable
or impermeable is dealt with in this study.

Let us consider a certain sedimentary rock with
a texture and structure which represent the inter-
granular porosity in separate pores, while they are
connected with thin, narrow tubes or channels. The
tubes or channels can be open or closed against
pore to pore hydraulic movement.

This model seems to be applicable to mature,
consolidated sandstone rather than to
unconsolidated sandstone of higher porosity,
where the porespace does not necessarily allow
its classification as pore and channel. In
unconsolidated sandstone plane-like connections
can represent a large part of non-solid volume. For
real rocks, the question about the open or closed
character of the channel is regulated by the
presence and development of cementing material,
or by the type and development of dispersed shale.

The determination of the numerical value of
the permeability of a rock as a function, among
others, of the permeability of each channel (zero
for the closed one and a given constant for the
open ones) has a highly complex character,
Consequently, the model presented in this paper
is restricted to determination of the permeable or
impermeable character of the rock. In spite of this
restriction, the model gives a vivid picture about
the fluid movement in porous media. In this
respect, the character of the results derived here
can be compared with that of the porosity
calculation of different regular spherical packings
(Amyx, et al.,1960). It does not play a direct role
in the solution of reservoir engineering tasks but
gives a fixed scale for the interpretation of porosity
data in the solution of engineering problems. This
picture also helps to make a visual, qualitative
estimation of permeability of a core sample on the
basis of microscopic thin sections. Despite the fact
that no special hydraulic properties are taken into
account, one can not apply the model for the
questions of electrical conductivity, because shale
(and cementing materials), in general, are not
perfect insulators.

Percolation theory deals with the conductivity
and permeability of random networks. The

achieved results are summarised by monographs
(Dullian, 1992; Stauffer and Aharony, 1992). The
main method of the percolation theory, since the
earliest result (Broadbent, 1954), is the Monte
Carlo simulation of the random network.
Consequently the nodes of the network should be
relatively high, in the range of 10*-10* nodes
(Seliakov and Kadet, 1996),

The present work deals with random network
as well, however as it will be explained latter on,
there is one essential assumption, namely, only one
way connections are considered in the direction
of the fluid flow. This new assumption gives the
basis for the application of recursive solution,
which, as it is proven in this paper, dramatically
reduces the number of necessary nodes for getting
the stabilised solution. This feature of the solution
gives a good chance for the application of the
recursive method for further tasks. In general, the
results derived here are similar to that of the
percolation theory, e.g. the percolation thresholds
for the square and cubic arrangements are close
to that of Korvin, 1992. The aim of the present
work is the introduction of the recursive method,
rather than the detailed comparison of the two,
similar but not identical, tasks.

SETTING UP THE HYDRAULIC
CONNECTION MODEL AND
QUANTIFICATION OF THE PROBLEM

Suppose the following construction is of a
logical rather than an experimental character
consisting of spheres of uniform diameter of one
length unit with centres in the integer grid points
(ix'i_wi,.)v where [ €i <n +1;1< i< Htls | & =
n+1. Exerting pressure, as a compaction model
of the rock, on each of the side walls of the packing
can change the spheres shape into cubes with
rounded edges while vertexes have the shape of
common dice. The centres are described with the
same (i, i, 1) grid points but with a reduced
length. Shifting the coordinate system of the
packed model by the vector ('/,, '/,, '/,) and
considering (iv i\,, i)only for | < L £ny L= i‘U <
ny; 1 <i <n, gives the pore volume in the form
of n_n_n, separate pores. Each inner pore volume
is connected to six others by narrow channels. It
is also assumed, as a model of further
consolidation of the rock, that any of the unit
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length edges can be randomly blocked against
hydraulic movement by cementation or by
dispersed shale fraction. Assuming high hydraulic
pressure on the i, = 1 plane and low pressure on
i, = n, plane the question of whether fluid
movement is possible between the two parallel
faces is posed (Fig. 1).
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Fig. 1. Cubic arrangement for modelling the grains, the pores
and the pore connections.

The network of Fig. 1 has n_n_n, pore centre
points and the number of edges are denoted as
block £ e Yz :
—_— B (_nx, n:v, n). If we g!oup edges in that 91 X,
y and z direction, then their numbers are arrived
at in the form:

block _—
s € (nx, n,. “,,) =n n, (n, - 1) +
n n (ny— 1)+n n, (n-1)=
3nnn-nn-nn-nn (1)
Xy oz Xy Xz Yy oz

The derivation requires the number of edges
on plane surface as well, as an example, on the
i =1 plane. Introducing the N "**'(n_,n ) notation
z edges Ty o
for the number of edges for the rectangle, similar
to eq.(1) but in two dimensions, gives:

Tegt (nx,ny) =1, (n-1)+n (n_v -1)=
=2n =L~ 11, (2)

edges

The question about the presence or absence of
connection between the parallel faces depends on
the ratio of the sizes (dimensions). To be
conductive a thin layer (n, << n_and n << n )
requires only a few open connections, while an
elongated object (n, >>n_and n >>n ) requires a
higher number of open channels.

Thus, a cubic rock sample is examined. The
fluid enters into the pores, given by i, = 1, should
reach the face given by i, = n,. The cube
corresponds to the situation where the n-width
pore openings require the same number of edges
for the fluid molecules to travel in order to reach
the opposite face. So, the size of our hydraulic
cube for z direction conductance is defined as

n.=n=n and n,=n+l (3)

The hydraulic pressure should only have a z
direction on the i, = | and i, = n, faces, thereby
deleting from the system the x and v edges
direction from these two parallel planes. For the
sake of conciseness, the object remaining after
deleting the superfluous edges is referred to as
hydraulic network of n- story (Fig. 2).

Fig. 2. Hydraulic network of 3-story.(3D, n=3).

The number of edges, denoted by N "“(n, n,
n+1), of the hydraulic network can be easily
obtained. By virtue of the construction,

N ™ n n)=N
X ¥ z

edges

cdguthlwk(nx’ 1, n,)-
-2 Nudg“”‘"(nx. ny) (4)
Substituting eq.(3) into eq.(4) and applying

eq.(1) and eq.(2) gives:

L‘(iuc«'hyd(n’ n,n+l)=3n*-4n*+2n (3)
Exact mathematical form of the problem is the

following. Having a hydraulic network of n-story

and a fixed i integer number 1 £i £ chgus"-"" (n, n,

n+1) all the different hydraulic networks are

studied, where the exact i number of channels are
open. The question derived from this is:
C (Nudg“"-‘"‘(n, n, n+1), )
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[where C(n,k) = n! / ((n-k)!k!)] number of
models, how many allow fluid movement from the
i, = | plane to the i = n+I plane. In all the z-
direction edges, fluid movement only in z-
direction is assumed (minus z-direction movement
is not allowed). This assumption simplifies the
task and is adequate from petroleum engineering
point of view.

As an example, the 3-story hydraulic network
of Fig. 2 is taken. According to eq. (5) we have 51
edges. When i = 3 (3 randomly selected open
edges) the number of different models become
C(51,3) = 20825. Reaching the upper plane from
the lower one with just three open edges is possible
only if all the three edges are vertical and are on
the same string (i\ = constant and i\,: constant for
the end points of the open edges). This can be done
in 9 different ways. Thus, the probability of the
event of having a hydraulic connection between
the two faces (the ratio of the favourable models
to the number of models) is 9/C(51,3) = 0.00043
which is very small. It is noted that even for n=3
for models with a higher number of open edges
1> 3, it becomes very difficult to determine the
number of conductive models.

RECURSIVE SOLUTION
AND COMPUTER ALGORITHM
OF THE PROBLEM

The solution of the problem for all open edges
itfrom 1 toN_ _"“(n,n,n+1)is needed. The number
of models, for n = 3, is 2°' (= 10'%), while by eq.
(5) forn =4, it is 2" (=10*"). It is fairly possible
to build up an algorithm which determines each
model (open edge system) whether or not
hydraulic connection is established. However, the
number of models is enormously high and
increasing rapidly with growing n. Consequently,
such a direct algorithm is not applicable, starting
from some small n. regardless of the capacity of
the applied computer system.

Here, examining the hydraulic connection story
by story, a recursive solution is given. For a fixed
n-story hydraulic network, the dependency of the
number of models, which connect any of the points
n =1 to a given point system of n_=j, upon the

7 = i 5
number of open edges up to the level n, = j, is
studied.

Before setting forth the solution in detail, some
general notes should be mentioned.

(a) Any recursion brings useful results only if it
can be solved. The main formula of the present
paper is complex enough to make it difficult
to obtain a solution by hand calculations, but
it allows computer solution even for large n
values.

(b) The recursive solution, described here, with
changes in the main formula, is valid for the
general three-dimensional case G
However, its description and its computer
solution become more difficult than the two-
dimensional case n = 1. The analysis of the
three-dimensional general hydraulic network
will be given on the basis of the results
obtained for the two-dimensional n_ =1 case.

Thus, returning to the recursive solution, the
case n = | is supposed, withn_=nand n =n+l;
where n is a fixed, unchanged integer. For this
case, the two-dimensional network, which
corresponds to the hydraulic network of n-story
can be seen on Fig. 3 for the case n = 4. This object
will be referred to as hydraulic ladder of n-story,
and the number of edges of this object is denoted
by N, (n, n+1). Applying the same reasoning
as was done for eq. (4),and, also using eq. (2)
gives:

N Win n+l)

edges

Utlycsrwl(n’ n+ I) - 2(“ - ]) =
n e+ (n- 1) (6)

Fixing n, alongside the hydraulic ladder of n-
story its parts are also defined as follows. Those
(i, 1) points and edges for which, in case of points,
i, <i+l1 and edges, at least for one end point 1<
i+1 will be referred to as i story of n-story
hydraulic ladder. This object and at the same time
the number of its edges will be denoted as N (i).
Fori=1, the I story consists of n-vertical edges.
and for i = 2 it consists of the previous vertical
edges plus (n - 1) horizontal edges plus n new
vertical edges, etc.. In this way

N(i+l)-NH(i)=n+(n—l):Zn—l (7)

The last, n'™ story gives back the whole
hydraulic ladder of n-story, i.e.
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N () =N_  "(n, n+l) (8)

Fig. 3 demonstrates the 2" story of the
hydraulic ladder of 4-story as well.

n = 5 @) O C 0
C O < @]
z Q ) C S
A
|| ) 1
(@] ) U .
n =4
> X

Fig. 3. Hydraulic ladder of 4-story and its 2" story.(2D, n=4).

Those (i, i) end points of the i" story of n-
story hydraulic ladder for which i, =i and which
are hydraulically connected to the base line (i, = 1)
by a given system of open edges are defined as
wet points (as to the naming to this definition, dry
rock sample is considered, which becomes
gradually wet as a result of fluid movement
through the open connections).

A system of wet points, given by different
systems of open edges, can produce any order of
zeros and units (0 corresponds to dry and 1
corresponds to“Wet points). In connection to this
fact, [Bs(n,j)}j:” denotes the set of those binary
sequences, which consist exactly n number of
0 -s and 1 -s in the way, that the sequence gives
the number j in binary number system [e.g. Bs(5,2)
=(0,0,0,1,0)]. Because of the need to refer to the
number of units (e.g. number of wet points) in the
binary sequence Bs(n,j) it is denoted by Ijl
(continuing the previous example, 12I = 1). As
negative numbers are not used in this paper, there
is no danger to read this notation as the absolute
value of a number.

For the sake of conciseness, the definition of
each integer used in this paper will be fixed. n
denotes the size of hydraulic ladder of n-story as
before, with a fixed value. m is the m"™ story of
this ladder, 1 < m < n. i is the number of open
edges of the ladder up to the m" story, 0 €1 <
Nn(m). j and k stand for the binary sequences of
wet points of (m-1)" and m" stories, respectively,
0<j<2"1 or0<ljl £n and the same holds for k.
[ is the binary sequence which describes the
horizontal open edges of the i = m row of edges,
which are the only horizontal edges, part of the
m™ ladder but not part of the (m-1)" ladder. 1
stands for the open edges and O for the closed ones.
Having n-1 horizontal edges, evidently, 0 £/ <

] 2 [l =3
o 0 0
i ! X ='O
1 I or :
1] x =1 =2

lil =3

[R®]

Fig. 4. Notation system for points and edges in different
relations to each other.

2%01 or 0 £ 111 £ n-1. Fig. 4 illustrates the
notations we introduced. Dark points and bold
circles represent the wet points of (m-1)" ladder
and m™ ladder respectively. Single continuous line
represents the horizontal open edges of m™ ladder
(their number is | /1), while double lines give these
vertical edges of the m" ladder, which are running
upwards to wet points.

The question, having the m'" story of the
hydraulic ladder of n-story and selecting exactly i
number of open edges from the m™ ladder, can be
done in

C (Nn{m), 1) (9)

different ways, how many times the end wet stage
of the m™ ladder is the Bs(n,k) binary sequence.
This number is denoted by

|NB,\(|I.M (Nu(]n)’ 1) ' (10)
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The relation between the Bs(n.j) wet point
system of the (m-1)" ladder and the Bs(n.,k) wet
point system of the m™ ladder is needed for the
recursive solution. New wet points can be
generated only by vertical edges, consequently all
the [kl vertical edges given by Bs(n,k) are open.
Because of having only z-direction fluid
movement, they establish hydraulic connection
only in the case when the | /| new horizontal edges
connect all the Ikl points of the (m-1)" ladder,
which lays directly under the Bs(n,k) end points,
to the Ijl end wet points of the (m-1)" ladder. This
can be realized by quite different Bs(n-1, /). At
any given Bs(n-1, [) there can be a certain number
of end points of the (m-1)" ladder which remains
dry even after connecting the new | / | horizontal
open edges. One can open vertical edges to the
top of any of these points without changing the
wet end point system of the m™ ladder. Suppose x
vertical edges of this type is placed. This
classification of the role of edges is described by
the following formula:

o B L |
lNB:.‘(n.k) (Nn(]n)' ]) = Z Z {HBhfn,}\) (BS(“, j)’

j=0 =0
Voids(k, j, §)

Bs(n-1,4)) >, C(Voids(k, j, 1), x)-
x=()
IN (N, (m-1), i-Ikl-l/I-x) ] (11)

Bs(n, j)

Here, H is a logical function, which can assume
only 0 or 1 values, and describes the hydraulic
relation. H is the only one in the case when the
Bs(n,j) wet point system of the (m-1)" ladder and
the Bs(n-1, /) horizontal open edge system make
all the Ikl points, which are directly under the [kl
points of the Bs(n.k) system; wet. H is zero
otherwise,

Voids(k,j, [) are the functions which tell the
maximum possible number of x-points, at a given
Bs(n,j), Bs(n-1, /) selection, with the Bs(n,k) end
point system. If the i-lkl-l/l-x argument of IN is
less than zero (which is fairly possible even at
H = 1), then IN = 0 should be taken into the right
hand side of formula (11) (controversial edge
system can not give model realising the Bs(n,k)
end stage).

Formula (11) finds any open edge system which
produces the Bs(n,k) end wet point system. Indeed,

this open edge system is a definite Bs(n,j),
Bs(n-1, /) binary sequence. For these two binary
sequences H=1, and for the x-value belonging to
the open edge system C 2 | [for the special case
X = 0, regardless of the value of Voids(k,j, 1),
C(Voids(k,j, 1), 0) = 1] consequently, the given
edge system is taken into consideration in the sum
ofeq. (11).

Any two edge system, which positively
increases the right hand side of formula (11), is
given by different edge systems. Indeed, if they
belong to different j value, then the two systems
of edges differ already in the (m-1)"ladder, if they
belong to different / then they differ in the new
horizontal edge system. If j and / are the same then
they are counted in the sum, i.e. H=1, only in the
case if the end stage is Bs(n,k). In this case the
two edge system differs at the selection of vertical
void edges. This means either x is different for
the two systems or the selection from the possible
number of horizontal edges (Voids(k,j, [)) is
different. This way, the validity of formula (11) is
proven.

The recursion character of formula (11) is
reflected by the fact that its right hand side consists
of the number of models IN only for the (m-1)"
story, but for different number of open edges,
while the left hand side gives the number of
models for the m" story.

To start the recursion, some initial values for
the number of models IN establishing the Bs(n,k)
end wet point system are needed. Because for the
first row (n_= 1) all the points are wet, for the
first story (the n < 2 points) Bs(n.k) is regulated
exceptionally by the presence or absence of
vertical edges, i.e.

. | if 1 =1kl
IN N (1), = :
Bun.m( n( ). 1) { 0 otherwise

Having the initial value from eq. (12) for m=1
and the recursive step given by eq. (11), the
number of models IN, which is described at (10),
can be calculated, up to the n™ story.

This recursive algorithm requires solving by
computer the applied logical function H and
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integer function Voids. Both depend on the new
end stage of wet points Bs(n,k), the old one Bs(n.j)
and the system of selected horizontal edges
Bs(n-1, /). There is no major difficulty in these
steps. Moreover, their value is not a function of m
and therefore there is no need to calculate them
only at the first step of the recursion.

The solution of the recursive formula (11)
requires a sequence of tables, having 2" rows for
all the different Bs(n,k) values and a changing
number of columns. For m = 1, the number of
columns is n+1 (we have 0, 1,.. n number of open
edges for the first story). For m=2, according to
eq. (7), this number increases by 2n-1, the number
of possible new open edges, up to m = n, when we
have N (n) + 1 columns. To fill up the next table
we only need the previous one.

m=1 m=n

k Ikl Bs(n,k) O<isN (m)

‘Nimn.k:(Nn( 12 }’l )

C(N, (m),i) B

Fig. 5. The structure of Table I, notations are given by the
nomenclature.

The structure of this sequence of tables, with
the introduced mathematical notations, is shown
in Fig. 5. The three header columns describe the
resulting binary sequence of wet points, while for
m=1,m=2, .. m=n the sub-tables of the
sequence of tables are obtained one by one. In each
sub-table, the values show the number of different
models given by different open edge systems,
which give the given Bs(n.k) end wet stage with
exactly i number of open edges. The sum of each
column is C(N (m), i), because 0 < k = 2n - 1
describes all the possible end wet stages. These
numbers give the last row, while their total is
evidently the sum of all the possible different
models of edge systems, i.e. 2¥ ™. This number is
given as the last number of the last row for each
sub-table.

Table 1 reflects the results of the whole process
of calculations for n = 3. In the table, Bs(n,k) and
the m™ story of 3-story hydraulic ladder is given
in graphical form. The sub-table belonging to m=I

is given by initial values of eq. (12). The
consecutive ones are the result of application of
the main recursive formula (11). The last row,
which is the sum of the values in the corresponding
column, is the C(N (m), i) coefficients, and is used
to confirm that the program solution of formula
(11) is correct. Direct checking of the smaller
values, observing some symmetricity in the table
and the rigorous inner check of program code are
convincing as to the validity of our calculations.

An example of reading data from the table is
as follows. The numerical value 209 in the first
row of the third sub-table means that selecting 8
open edges out of the 13 potential edges, which
can be done C(13,8) = 1287 different ways, 209
models do not establish hydraulic connection
between the faces.

Tables belonging to higher n values can be
created similarly. Before reaching the limit of the
necessary amount of memory or processing time,
the following difficulty is met. The highest integer
which can be represented on four bytes is about
232 while the maximum number of models falling
into the same category can be higher than 2%,
which means the answer can not be received in
exact integer terms. From this n value less accurate
real numbers can be applied for getting the
classification of models. Working with four bytes
integers, the necessity of real numbers comes up
at n =35. For n=4 e.g. selecting 13 open edges out
of the 4°> + 32 = 25, which can be done C(25,13) =
5 200 300 by different ways, the number of
impermeable models is 2 211 406.

Analysis of the Results

Table | gives the probability of having all the
end points dry (k = 0) as a function of the
probability, that a randomly selected edge is open.
First probability is given by the ratio of favourable
models to all possible models, i.e. by the ratio of
the first row to the last row in the last, m = n, sub-
table of Table 1. The second probability is given
by eq. (6), by the i/[n*+(n-1)*] ratio. The functional
relationship between the dependent variable
probability of the rock being impermeable and the
independent probability of the edge being open is
given on (Fig. 6) for n = 2, 3 and 4 values. The
probability distributions for different n values are
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Table 1. Sequences of tables belonging to the 1%, 2" and 37 story of hydraunlic ladder
of 3-story (2D, n=3), describing the distribution of models.

¢ 9 0
1 |
] ' 1
?9 o
: ! ''m=1 j ‘ : m=2
® @ @ 6 o
' 0 1 2 3 0 1 2 3 4 5 6 7 8
fe [B] Bsfn,d)
0 0 o—0—0 1 0 0 0 1 8 25 34 14 2 0 0 0
1 1 0—0O—@ 0 1 0 0 0 0 1 7 16 7 1 0 0
2 1 uv—ev 0 1 0 0 0 0 1 8 17 7 1 0 0
4 1 g—v— 0 1 0 0 0 0 1 7 16 7 1 0 0
3 2 00 0 0 1 0 0 0 0 0 3 12 6 1 0
5 2 @-u—g 0 0 1 0 0 0 0 0 1 9 5 1 0
6 2 g 9o 0 0 1 0 0o 0o 0 o0 3 12 6 1 0
7 3 ¢-e—e 0 0 0 1 0 0 0 0 0 0 8 5 1
1 3 3 1 8 1 8 28 56 70 56 28 8 1] 256
Y v @
o= e 2y
Q- -0 - O m=3
6 & o
0 1 2 3 4 5 6 7 8 9 10 11 12 13
b 4]Bsn 8)
0 0 g—0o0 1 13 78 283 677 1078 1089 629 209 38 3 0 0 0
1 10-G-e@ 0 0 0 1 12 64 183 277 184 64 12 1 0 0
2 1 %-e< 0 0 0 1 14 77 211 298 188 64 12 1 0 0
4 1 00 0 0 0 1 12 64 183 277 184 64 12 1 0 0
3 209 0 0 0 0 0 2 23 96 186 138 53 11 1 0
5 2 g-0-e 0 0 0 0 0 0 4 40 120 103 44 10 1 0
6 2 e—@o0 0 0 0 0 0 2 23 96 186 138 53 11 1 0
7 3 @e-—e¢ 0 0 0 0 0 0 0 3 30 106 97 43 10 1
1 13 78 286 715 1287 1716 1716 1287 715 286 /8 13 1] 8192

similar. The only two non-trivial probabilities
belonging to n = 2, fall very close to the
distribution curve belonging to n = 4. This

indicates that there is no need to increase n further

to estimate higher n probability distributions. The
curve tells that if P(edge is open) = 6/25 = .24

then the conditional probability P(rock is
impermeable) = .993. If half of the edges are open,
then the number of permeable and impermeable
models are equal for the examined two-
dimensional rock model.
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Fig. 6. Probability distribution curves for the hydraulic
network in two and three dimensions with different number
of story. x axis shows the probability that the edge is open,
while y axis gives the probability that the rock is
impermeable.

The high stability of the probability
distributions of Fig. 6. obtained for the hydraulic
ladder of n-story is convincing and that the
required distribution from low n values can be
obtained. Applying this experience to the 3-
dimensional problem of the hydraulic network of
n-story, instead of solving by a computer the
recursive formula analogue to that of given by
formula (11), direct computer program for the 2-

story hydraulic network was made. There is no
major difficulty in the development of this
program, but it does not allow generalisation for
any higher n. Indeed, the direct program ran 0.16
seconds on a Pentium processor for n = 2. For
n = 3, according to the estimation made using
eq. (5), the computer time would be 2*#8/3%25-12
times longer, which is more than 107 years.

Results of this 3-dimensional analysis are given
in Table 2. According to formula (5), with n = 2,
the model has 12 edges. The 16 possible end stages
of wet points are indicated in Table 2 by small
drawings, without repetition of the symmetrical
ones. The very last row of Table 2 gives the
required probabilities. The probability distribution
belonging to the 3-dimensional hydraulic network
is also represented (Fig. 6). Comparing the 3-
dimensional distribution with the two-
dimensional one, indicates that while for the 2-
dimensional case, when half of the edges are open,
there is an equal chance for the rock being
permeable or impermeable. In the 3-dimensional
case one third of the edges open makes these
probabilities equal. If only 1/6 part of the edges
are open, i.e. P(edge is open) = .166, then P(rock
is impermeable) = .939 which means a confidence
level of .939 one can declare the rock is

Table 2. Distribution of models for the hydraulic network of 2-story (3D, n=2).

m=2
o 1 2 3 4 5 & 7 8 9 10 11 12

£ |k Bsfrp)
T 090 T 12 62 172 257 176 68 1 2 0 0 0 0O
1 1] 0 0 1 12 56 119 87 34 8 1 0 0 O
2 1LYS 0 0 1 12 56119 8 34 8 1 0 0 0
4 1{ 8-6 0 0 1 12 55 119 87 34 8 1 0 0 O o 5
8 1) 0 0 1 12 5 119 87 3¢ 8 1 0 0 0 ‘

-9
5 27 @0 © 0 0 0 1 18 72 84 30 8 1 0 0O B ? ;
3 2 o 0 0 O 3 2 8 70 3 8 1 0 0 \
8 2L ¢ 0 O 0 0 o0 3 26 8 70 3 8 1 0 0 —10
g 2 4 & 0o 0 0 ©0 3 2 83 70 3 8 1 0 O -
12 2l 0O 0o 0 O 3 26 8 70 3 8 1 0 O
10 2._90°9 o 0 0 O 1 18 72 6 30 8 1 0 O

J’J—i n=2
7 4 o o ©0 O 0 O 8 5 58 29 8 1 0 <
11 3¢ ® 0o 0 0 0 0 O 8 5 58 29 8 1 O
15 B s o o 0 O O O 8 58 5 29 8 1 0
14 3 o o 0 0O O O 8 5 5 29 8 1 O
15 4—~I"i o 0 0 0 0 0 0 O 45 52 28 8 1

-

’ T 12 66 220 495 792 924 792 495 220 66 12 1] 4096
1 1 .939 .782 .519 .222 .074 .020 .004 0 0 0 0
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impermeable. On the other hand, just with the half
of edges open, i.e. P(edge is open) = .5, it can be
declared that the rock is permeable with the
confidence level 1-.074 = .926. If the ratio of open
edges is between 1/6 and 1/2 then judgement can
not be made about the permeability character of
the rock without having a more detailed
knowledge of the inner structure of the
cementation or shaliness of the sedimentary rocks.

CONCLUSIONS

1- Complex questions related to the permeability
of sedimentary rocks require adequate
mathematical models on the basis of the theory
of probability.

2- Probabilistic model with a relatively low
number of random edges can give a correct
dNSWET.

3- Assuming cubic-like arrangement for the pore
and pore connection system with randomly
selected open edges (connections), and taking
a cubic sample from such kind of theoretical
rock, analysis of the probability distribution
revealed that if only 1/6 of the channels are
open the rock is impermeable but if 1/2 of the
channels are open the rock is permeable.

NOMENCLATURE
n,n.n numberof pores in cubic structure in x,
y, z directions, respectively
i,1,1,  running indices for the pores, integer

numbers, e.g. for the x direction,
=i g
Yk(n,n,n) number of edges (channels)
' for the 3D block
number of edges (channels)
for the 2D block (rectangle)
n number of pores in the x and
y directions (3D case), or in
the x direction (2D case)
number of edges for the
hydraulic network of n-story
(3D case)
number of edges for the
hydraulic ladder of n-story
(2D case)

edges

et
N,,..c(n, ny)

edges
N__."(n, n, n+l)

e

N I:nl(n’ ﬂ+[)

edges

C(n,k)

Bs(n,j)

m

ik

IN

Bs(n,k)

number of combinations, selecting k
objects out of n objects, regardless of the
order of selection; C(n,k)=n!/((n-k)'k!)
The binary sequence of 0-s and 1-s,
which gives the 0 £j < 2°- 1 number in
binary number system and which is filled
up to n digits from the left by padding
zeros if it is necessary. E.g. Bs(5,2) =
(0,0,0,1,0).

The number of units (1-s), necessary for
describing number j in Bs(n,j). Note that
ljl is not a function of n. Continuing the
previous item of nomenclature, 2] = 1.
is the m" story of hydraulic ladder of n-
story.

number of open edges in the m"™ story of
hydraulic ladder of n story, 0 €1 < N (m).
describe the system of wet points of the
(m-1)™ and m™ story, respectively, with
the aim of Bs(n,j), Bs(n,k) binary
sequences, 0 < j < 2"-1 or, what is the
same, 0 £ [jl € n.

describes those horizontal open edges,
which are part of the m"™, but not part of
the (m-1)" story of hydraulic ladder of
n-story, with the aid of binary sequence
Bs(n-1,/),0</<2° Jor 0O </l €n-1.
number of those open vertical edges,
which are part of the m™, but not part of
the (m-1)" story of hydraulic ladder of
n-story, and, which do not contain wet
point as an end point.

(N (m), i) the number of those different

open edge systems (network
models), which create (give)
the Bs(n,k) wet point system for
the m™ story of hydraulic ladder
of n story, and which contain
exactly i open edges.

HBu(n.L) (BS(n’j)’ BS( n- 1 J))

Voids(k.j./)

Logical function, assuming only
values 0 or 1. H assume 1, if the
Bs(n-1,/) horizontal open edge
system connects the Bs(n,j) wet
points to all the points, which are
directly under (in -z direction) the
Bs(n,k) wet points. H is 0 otherwise.
is the maximum value for x.
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