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PROBABILITY OF THE VALIDITY OF THE ROCK COMPONENT MODEL
IN COMPLEX LOG INTERPRETATION
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ABSTRACT mulated as a minimization task where the goal is to
minimize the distance, called incoherence, between
the empirical and the theoretical model as a function
of some model parameters. This idea leads to accept-
able result for any fixed model but does not give a
key, which model to accept. Indeed, in general, the

The minimization of the incoherence (the distance
between measured and calculated logs) is a basic
principle of complex well log interpretation. If lithologi-
cal models with different numbers of unknowns (rock
components) occur, however, the incoherences cannot

be compared direclty. more parameter considered by the model the less
The probability, o, of validity of rock component becomes the distance between the measured and

models is introduced as the basis of comparison. The calculated results. Defining too many parameters for

effect of restrictions on the mathematically evaluated the system of response functions, as might be known

mineral volume fractions is discussed. The theoretical from practice, the determination becomes less defi-

Chi-distribution is modified and the limits of its appli- nite.

cation are examined in case of restrictions. On the other hand, as a property of any measuring

The model probability, o, concept is applied for
practical illustration in the interpretation of a well in a
sandstone formation.

system the experimental material consists of some
degree of unavoidable uncertainty. Because of the
presence of this uncertainty the stalement about the
validity of the interpretation model becomes a prob-

INTRODUCTION ability statement rather than a certain one. Having

adequate definition for this probability and mechan-

The interpretation of geophysical data, in general, ism for its calculation we accept the maximum likeli-

involves the comparison of the measured field data hood principle which means the choice of the model

with that of the geologic geophysical model of the which has a higher probability of validity and which

situation under study. is not necessarily the model having the more par-
This comparison can be mathematically for- ameters.

The objective of the present paper is to give a

*Petroleum Research Centre P.O. Box 6431, Tripoli, G.S.P.L.A.J. proper probability measure to the simple distance
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concept, where this measure depends on the dimen-
sions of the minimization task as well. The math-
ematical scheme applied in this work, based on the
Fisher-Cochran theory, is close to that of decision
making of mathematical statistics. Two specific fea-
tures, however, influence the way of thinking. First,
we have always low number of different logs in a
given sample point, and second, the log readings
represent a strong statistical average of a repeated
observation.

The mathematical scheme developed does not give
a key on how to set up rock component models,
however, it is a useful tool to decide, when it is
possible, which model to choose in a doubtful situ-
ation.

SETTING UP THE PROBLEM AND
ESTABLISHMENT OF THE
DECISION MAKING

Let the measured field data be denoted by € concrete
form, of which is indifferent at the moment, and
suppose that two different geological-geophysical
models A, and A, can be set up on the basis of the
general knowledge about the situation under study.
The question is which model describes better the real
geological conditions on the basis of observation e.
Having the answer for two models, of course, we have
the answer for any finite number of models.

We suppose at this point, in advance, that the
probabilities of the involved events do exist, i.e. can
be correctly defined later on. In this sense, P(A;)
means the probability of the event that A, is the right
model of the studied situation. The observed € is the
only sure thing about the studied situation, thus we
need to compare the conditional probabilities

P(Aile) and P(A;le) (1)

Because of the purely empirical character of g, con-
clusion about the nature of the model cannot be
drawn directly. A, and & are mutually valid if within
the g event A, is valid, or if within the A, event e is
valid, this can be described using conditional prob-
abilities by the equation

P(A,e)=P(e)P(A,|€)=P(A,)P(e|Ay)

from which
P(A
P(As[o) =gt Ple Ay ®

This is the simplest form of the Bayes theorem, for
one hypothetical model A,. Substituting (2) in (1) the
answer to the problem lays in the comparison of
quantities.

P(A,) . P(A,)
PE) -P(e]A,) and Ple)

Ple[As) (3)

For this comparison P(g) does not play any role,
P(A,) and P(A,) must reflect the knowledge about the
area prior to the measurements. Often there is no
evidence about the priority of one model over the
other (e.g. clean and shaly sand equally possible at a
given depth point of a sandstone area) and in this
case (3) simplifies to the comparison of

P(e|A;) and P(e|A,) (4)

The essential difference between (1) and (4) is that,
unlike €, A, (and A,) is a theoretically defined com-
plete situation, the model of the area under study,
which gives the opportunity to define and calculate
the probability of occurrence of the measured ma-
terial €.

Definition of the Probability of Occurrence of Given
Measured Data at a Given Model of Interpretation

Now, the studied situation is the unit volume rock
(true formation) which surrounds the bore hole at a
given depth point. The measured data e is the vector
b,; which consists of the number m log readings of
different physical parameters at the same depth point.
The model of the rock is the k number component of
the rock (typically one fluid and k-1 solid component)
and its linearized response function for each tool is in
the form of the zone parameter matrix Z having m
rows and k columns.

Because the model A, is valid (there is conditional
probability in (4)) one defined independently from the
exploration, but unknown k dimensional vector x
belongs to it, which gives the volumes of each com-
ponents of the rock at the given depth. Z and x
together generate the ideal response vector b in the
form

Zx=b ' (5)

which gives m exact equations, without contradiction.
If there is no inner connection between b and by, then
there is no way to know x. Consequently we make at
this point the strong assumption that by, is an m-
dimensional stochastic vector variable of Gaussian
distribution with expectation b and with a unit vari-
ation of each coordinates. The last assumption
means, in practice, that the variation of each compo-
nent is known and equation (5) have been already
normalized according to this variations. Hence, in-
stead of (5) we have;

Z-x=by (6)
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overdetermined system of equations. The best linear
estimation for x is @ given by the Gaussian least
square method (see e.g. [1]), which is the solution of
the (ordinary) linear equation system

VAR Lg= ZT.I_)M (7)

There is a strong connection between X and g,
namely the expectation value of o is x, E(w)=x. In
equations (5), (6) and (7) Z, x and b are deterministic
values, while by, is stochastic vector variable and o is
a linear combination of coordinates of by, is stochas-
tic variable as well.

Now, we are going to examine the distribution of
the distance between the two sides of equation (6)
around the E(x(b,))=x point. Multiplying (5) by Z*
from the left and subtracting from (7), we get

(@—x)=(Z"Z)" ' *Z'(by —b) (8)

The incoherence I between the measured vector
and the response function with the best statistical
estimation g, using (5) and (8) can be written in the
form

I=|by—Z gl =(by—b)—Z(@—x)|

= (by—b)—Z(Z"Z)™" - Z(by—b)|

=/Mi+ni+- N 9)

where || || is the Euclidean distance in the m-dimen-
sions, and My, Na, ... N, are the coordinates of the
incoherence, each one is a linear combination of the
coordinates of the vector by —b. As a matter of our
assumption, the coordinates of the stochastic vector
b, —b are independent of each other, as their mutual
distribution is a Gaussian distribution with the zero
vector of expectation and with the unit (matrix)
variation. The coordinates of the n=(n;, N3, ... M)
incoherence vector are not independent from each
other, because there is k number of linear relation-
ship among them, namely,

2 =2"(by—b)—Z"Z(Z"-Z)" - Z(by—Db)=0
To suppose more linear relationships among the
coordinates of i contradicts with the independence of
b, —b. According to the Fisher-Cochran theorem
[1], from this situation it follows for n, examining it
in a properly chosen orthonormal basis, that its m-k
coordinates vary freely, while the remainder k coor-
dinates equalise each other to zero. From this it
follows that the distribution of the right side express-
ion of (9) is the distribution of the distance of m-k
number of independent Gaussian distributions, each
one with zero expectation and unit variation. In other

words we got the theoretical distribution of the inco-
herence 1 for the A, model (represented by the Z
matrix). This incoherence is a stochastic scalar vari-
able, let it be denoted by £l,, and its distribution is
the Chi-distribution belonging to the m-k parameter,
ie.

Ela, =lbay—Z gl =%m-x (10)

The distribution of the Chi random variable ¥, is
well known, and for small values of n is characteristic
for the complex log interpretation application, and
can be expressed by the following form [2]

X

Py, <x)= j h,(t) dt

-

0 t<0
hi(1)= {gn(t) >0

2 219 —(1212
gl(t)=\/;-e""’"’; ga(t)=t-e™ 7 (11)

2 2 22 —(12/2
gs(t):\/:-t"e""f"’; gi(t) =L t3 e~ WD
T

U2 ey
gi(t)_Sﬁt e }

In this way we established the theoretical distribu-
tion of the incoherence as a result of the uncertainty
of observation by, This distribution is a function of
the only variable DF =m —k degree of [reedom which
reflects the dimension of the observations and the
dimension of the applied model of interpretation.

On the other hand, substituting the only measured
value for the vector by, into formula (9) we get the
experimental incoherence

L = Ibas —Z |l

using the o statistical estimation of x defined by (7).

Now it is clear, the smaller the I, empirical
incoherence the more reason to accept the choice for
model A,, thus we define the probability of validity
of the rock component model A; as the probability
measure of the event that the theoretical distribution
is higher than the experimental one, and denoting this
probability by a we estasblish

2=P(e=hy|A)=PEls, 2, ) (12)
Substituting (10) into (12), using (11) and some
elementary features of any distribution function, and

also changing the notation of the experimental Iy , for
I\p We get
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01=P(E_,IA, 212:\{): 1-P(El,, <IL’.M)
=1 —P(Xm—k <Iexp)

=1—fl"" B i(t) dt (13)

0

Returning to the original problem (4), the observa-
tion by, out of the models A; and A, verify that
model, and that estimation g given by the model, for
which the probability o of (13) is higher. In (13) m is
the number of logs involved into the interpretation,
while I.,, and k depend very much on the models A,
or A, used for interpretation purpose. Figure 1 dem-
onstrate, the probability « as a function of DF and
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FIG. 1. Probability of validity of rock component model
as a function of degree of freedom and incoherence.

Effect of Restrictions on the Degree of Freedom and
the Exactness of the Calculation of Probability o

In real practice of complex log interpretation in-
stead of equation system (6) we solve more complete
task. In fact, we use one more equation, the material
balance equation

X1+X1+“'Xk=1 (14)

and we require all the volume fractions to be non
negative, x;20,i=1,2, ... k, having in this way the set
of so called logical restrictions [3].

The new equation (14) simply means that in (13) we
have to put m+1 instead of m in the definition of

degree of freedom, since the deterministic equation
(14) is a limit of a stochastic equation tending to zero
variance on its right side, see [4].

In equations (8) and (9) the Z(z—x)eR™ vector
represents the projection of the b,;—beR™ vector to
the k dimensional hyper plain x(z;,2,, ... z,) of R™,
defined by the all possible linear combinations of
vectors Z,,Zs, ...Z, which are the column vectors of
matrix Z. Until the projection of the decisive mass of
the m dimensional Gaussian distribution of by, —b is
inside of the domain allowed by restrictions ie. the
projection is given in the form z,x; +2Z,X5 + -+ + Zi Xy,
where all x;=0, then the theoretical distribution of
the incoherence is undisturbed and is the Chi-dis-
tribution as given by (10). However, when the projec-
tion of the only measured by, vector is outside or
inside but close to the boundaries of the allowed
domain then the projection we calculated for the
theoretical distribution in (9) is not completely inside
the allowed domain and so in formula (9) a loses its
meaning and, in this way, our definition for £, fails.

Now we show that having the solution, as in [3],
for the minimising task with restrictions we can avoid
the case when the ordinary projection of the meas-
ured by, vector (which is the solution (7) of the
minimization task without restrictions) is outside the
allowed domain, Indeed, suppose that the exact sol-
ution of the minimising task with restrictions is eR*
contain ny number of zeros (ny<k). In this case we
redefine the interpretation model by leaving off the
zone parameters belonging to the zero values in %,
having in this way the Z' matrix of m rows and k —n,
columns. Now the solution with restrictions for the Z’
model is evidently given by & (without the zeros in it)
because the minimum is given by X even on a wider
set. From this it follows that for the real geophysical
task with logical restrictions and with the material
balance equation (14) the correct definition of the
degree of freedom in the formula (13) for the prob-
ability of the model validity is

DF =(m+ 1)—(k —ng) (15)

where n, is the number of zeros in the solution of the
minimization task with logical restrictions.
Analysing the case when the ordinary projection of
the measured by, is inside the allowed domain but
close to the boundary, we confine ourselves to giving
estimation for the minimum distance which guaran-
tees that we can use formula (13) with degree of
freedom given by (15) for calculating the probability
o with a satisfying accuracy. We construct this esti-
mation only for the most important, (i.e. most fre-
quent) case in practice, when the projection is near to
only one boundary, given by the x; >0 condition, and
far from all the others. As long as the projection of
by —b at the calculation of the theoretical distribu-
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tion is inside the allowed domain, vector o keeps its
original meaning, and formula (9) is valid. This pro-
jection is still a Gaussian distribution around b with
a unit variation and with k—n, independent coordi-
nates. Let us denote the distance of Zg from the i-th
boundary by u. In this case it can be shown easily
that ®(u,) part of the distribution is undistrubed by
the i-th boundary, where @ is the error function, the
distribution function of the one dimensional Gaus-
sian distribution. For example at p,=2, ®(p,)=
0.9772 that is, for this part of the distribution g still
represents a model point, so the caiculation of the
probability « in (13) is satisfactorily accurate.

So we need to calculate the distance of the Z%
point from the i-th boundary, where % is the solution
of the minimization task with logical restrictions
(which is the same as g calculated after the dimension
reduction described in (15)). We can avoid repeating
the calculation for each X solution at different depth
points, noticing that if we calculate only once the
distance D; of z;, the vertex of the allowed simplex
domain, from the w(z;, ... Zi_1,Zis1s - Zx—n,) hYDET
plane then the distance we are looking for becomes x;
part of D;, where x; is the i-th co-ordinate of x. This
statement is a direct consequence of the fact that
tZi+ (21, - Zic1s Zis1s - Zuon,) Tepresents parallel
planes, distance of which is regulated linearly by the
t parameter alone. In this way the formula (13)
remains valid, despite of the restriction conditions,
with accuracy governed by y, if

xi>% (16)

fori=1,2...k—n,.

To calculate the D, distances we have to find the
projection of z; for the x(zy, ... Zi_1, Ziv1 -+ Zx_y,) hy-
per plane, which is again given by the best statistical
estimation of the

(Zi-)'y=z (17)

overdetermined system of equation, where Z;_ is the
Z matrix after neglecting its i-th column, and the
unknown y has k — 1 coordinates. Thus if we express
the projection of vector z;, as in (7), then we get the
distance

Di=zi—Z-(Zi-Zi-)""-Zi-zill (18)

where | || is the m-dimensional Euclidean distance.
If we have a component in X different from zero
volume component which does not satisfy inequality
(16), that occurs for a fairly defined zone parameter
matrix only at a lower percentage of all the depth
points of interpretation, then for the calculation of o,
instead of the Chi-distribution of (11), we use more
sophisticated boundary distributions, which is not the

subject of the present paper.

For the sake of conciseness let us introduce besides
the degree of freedom in (13) the symbolical degree of
freedom as follows:

If DF’ and DF” are two positive integers and B’
and B” two real numbers, then the statement that we
apply (13) with the symbolical degree of freedom

DF=p'-DF @B"-DF”" (19)
means that
lexp lexp
1—0l=!3'j gor-(t) dt+ p”- gor-(t) dt (20)
0 0

Now, suppose that for all the i=1,2, ... k—ng (16)
is satisfied except one i for which x; tends through
positive numbers to zero. In this case one restriction
effects the determination of the theoretical distribu-
tion of incoherence. Using the symmetry of this
special case it is not difficult to realise that we get the
proper calculation for the model validity probability
by applying (13) with the symbolic degree of freedom

DF=1-DF ®{(DF +1) (21)

where the meaning of multiplication and ‘plus’ is
given by (19) and (20), and DF is given by (15).

In the case, when (16) is satisfied for all
i=1,2,...k—ng except of two for which x; and x; tend
to zero, and the angle defined in the m-dimensional
Euclidean space by the ®(z;, ... Zi—1 Zi+1s oo+ Ziono)
and (Zy, ... Zj_1.Zj+1» --- Zx—n,) hyper planes is ¢, then
the probability o is given by (13) with the symbolic
degree of freedom

DF

(P-DF(-B%(DF+1)(-B%(DF+2} (22)

"o 2

When in (22) ¢ tends to =, then DF, tends DF
given by (21), since in this case the two hyper planes
are in coincidence.

ILLUSTRATION OF THE USE OF THE MODEL
VALIDITY PROBABILITY IN SANDSTONE
FORMATION

Our general experience related to the usage of the
probability concept above shows that depending on
the geological circumstances, on the quality of the
field measurements, and on the applied models of
interpretation very different relations can be obtained
among the probability curves. Accordingly, the inten-
tion here is just to give some illustration about the
practical application of those curves, for the determi-
nation of mineral composition of drilled through
formation. We have the density, neutron porosity,
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acoustic, photoelectric index and the thorium and
potassium spectral gamma ray logs (m=6) of one
well in Hamada North area for complex interpreta-
tion. For the geophysical modelling of the drilled
sandstone we define a set of modeis in the following
way. Suppose that the basic part of the matrix is
given by sand (8d) and by dolomite (Dol) while the
pore volume is filled up with interstitial water (Por).
Additionally the matrix contains or may contain silt
(Sil), different type of clays like illite (Ill) or kaolinit
(Kao) and/or some iron bearing minerals like limon-
ite (Lim), hematite (Hem). The response values for the
measurements ol this materials are given by labora-
tory data of the studied formation and by general
tables, based on calculations and on laboratory
measurements [5]. We can include a “mineral” into
our mineral composition model only in the case if it
has at least one significantly different value among its
zone parameters from the zone parameter values of
the sand and dolomite and from all the other in-
cluded materials as well. Using this mineral set we
define two component models {Por,Sd} and
{Por, Dol}, for the sake of completeness, as the poss-
ible simplest formation; the basic clean sandstone
without clay component {Por, Sd, Dol}; models for
shaly sandstone {Por, Sd, Dol Ill} or the same but
Kao instead of Ill; models with iron hydroxides or
oxides as {Por, Sd, Dol, Lim} or the same but Hem
instead of Lim. We also define a larger number of five
component models, combining the clay and iron
bearing minerals. Thus we have a model set with
different number of components; k=2, 3,4 or 5, and
according to formula (15) DF=5,4,3 or 2. Com-
paring for example the {Por,Sd,Dol} and the
{Por, Sd, Dol, Ill} models often we experience that in
a given depth point for the volumetric fraction of illite
we get zero, X, =0, and in this way as ny=1, express-

sion (15) reduces DF by one and the latter model
compeletely simplifies to the three component model
{Por, Sd, Dol} with exactly the same numerical value
for a. But this possibility does not mean that the three
component model is superfluous. Indeed, frequently
we get that x, does exist (x,>0) in the four compo-
nent model but the probability o belonging to this
model is less than that of the three component model.
In this situation we conclude that even though the
very existence of the illite component in the geologi-
cal reality at the given depth can not be excluded, the
illite component does not exist in a statistically sig-
nificant quantity at the given depth.

Selecting the most appropriate model for interpre-
tation we have a double aim. Our basic parameter for
the oil industry and the most robust one is the
porosity and we try to determine its value with the
highest possible accuracy. Often we experience that
different sandstone models give porosity percentages
very near to each other while the probabilities be-
longing to the models differ significantly. This empha-
sizes again the high stability of porosity estimation
from logs. In this situation we have enough reason to
say that using a wider set of logs (m=35, 6, 7) we can
determine not only the volumetric percentages of
given minerals, but also decide certain alternatives
related to the composition of the rock, therefore
giving additional useful information about the forma-
tion for the reservoir engineer,

We note that in the calculation of « typical bound-
ary distances defined by (16) and (18), belonging to
the practically yet acceptable py=1 value, are
x; =0.024 for the porosity, x,=x;=0.23 for sand and
dolomite, x,=0.044 for shale and x5=0.03 for iron
oxides.

In Fig. 2 we demonstrate the model validity prob-
ability for the above models as a function of the
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FIG. 2. Probability of validity of different sandstone models as
the model in a well of sandstone formation.

a function of number of mineral components involved into



number of components establishing the curves of
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maximum o value of all the two, four and five
component models respectively, and using the only
one three component model as well. In this interval
the best two component model already gives relative-
ly high probabilities, but almost everywhere the
{Por, Sd, Dol} basic model works better. In the
8336.—8342. feet and in the 8352.5-8360. feet intervals
any four or five component model gives the same
probability as the basic model (because, in fact, they
simplify to the basic model) which clearly indicates
that in this intervals we have clean sand formation. In
the two remaining intervals the best four component

models give much higher probabilities than the basic

model, thus here we have definitely shaly sand.
In the 8330.5-8333.5 feet and 8345.5-8347.5 feet

73

intervals (shaded area in the figure) any fifth compo-
nent definitely reduces the probability, because here
the fifth component does not vanish but statistically
is not significant.

More complex rock development is indicated in
Fig. 3, where the two and three component models
are failing. From 8050.0-8055.5 and from 8039.5-
8064, feet (shaded area) without five components we
cannot give complete explanation of our measure-
ments, while on the remaining sections four compo-
nent models give this explanation. In the mentioned
five component intervals Kao plus Hem and Kao
plus Sil appear in the formation. In the intervals
8057—-8059.5 and 8064.—8070. feet Kao is the type of
the clay in formation, while in the interval 8055.5-
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FIG. 3. Probability of validity of different sandstone models in the same well.
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8057.0 the presence of Kao, Ill or Sil cannot be
distinguished.
Table 1 shows in details the determined volumes

Table 1. Volume Fractions and the Probability of Validity
Given by Different Sandstone Models at 8054 feet

Por Sd Dol Kao 1 Si Hem Alfa
0.0971 0.6204 0.1028 0.1768 X x X 042
0.1581 03195 0.3438 x x  0.1789 X 0.5
0.0923 0.6688 0.0358 x  0.2031 x x 0.66
0.0923 0.6688 0.0358 x  0.2031 X 0 066
0.0975 0.7111 0 01718 X X 00144 072

0.1251 04466 0.2236 0.0983 x 01064 x 0.92

and probabilities belonging to different models; at
8054 feet here the Kao, Sil combination alone give the
definite maximum probability .on a three feet long
section, thus the presence of those minerals are pro-
ved; their presence at this depth effects the porosity
determination relatively strongly.

CONCLUSION

e As far as we work with models of different dimen-
sions for complex log interpretation, we have to
develop the minimum incoherence concept into the
maximum model validity probability concept.

e For the calculation of the model validity probabil-
ity, despite of the presence of restriction conditions,

for the most depth points we can use the Chi-dis-
tribution with a modified degree of freedom. However
in certain cases more sophisticated boundary dis-
tributions are necessary for the same calculations.

e Using the model validity probability concept we
can increase the accuracy of porosity estimation and
decide certain alternatives related to the rock devel-
opment as well.

ACKNOWLEDGEMENT

I would like to thank the management of the
Petroleum Research Centre for the support of the
present research. The author highly acknowledge the
numerous consultations with Prof. Zoltan Barlai.

REFERENCES

[1] Vincze, L., 1968, Matematikai statisztika ipari alkalmazasok-
kal [Mathematical Statistics with Industrial Applications]
Muszaki Konyvkiado Budapest (Technical Book Company).

[2] Renyi, A., 1966, Valoszinusegszamitas [Theory of Probabil-
ity] Tankonyvkiado Budapest (Text Book Company).

[3] Sazigeti G., 1994, Restriction Conditions in Well Log Inter-
pretation, Petroleum Research Journal, Vol. 6., Tripoli,
GS.PLAJ

[4] Szigeti, G., 1993, Improvement of the Accuracy ol Statistical
Well Log Interpretation Using the material Balance Equa-
tion, Petroleum Research Journal Vol. 5, Tripol,
G.S.P.LAJ

[5] Barlai, Z., Zilahi-Sebess, L., 1993, Report on the Sheet
Silicates and their Effects on the Basic Reservoir Parameters
of Shaly Sandstone and Barrier Shales, Petroleum Research
Centre Internal Report, Tripoli, G.5.P.L.A.J.





