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RESTRICTION CONDITIONS IN WELL LOG INTERPRETATION
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ABSTRACT

In comparing the measured and response logs during
the process of complex well log interpretation, the
parameters of the rock model must fulfill certain restric-
tion conditions.

The present paper shows how the different types of

restriction conditions can be handled by constraining
the domain of definition on a convex selid (Polyhedron)
of higher dimensional space. The paper offers and
realizes complete mathematical and algorithmic sol-
ution for the minimization of incoherency between the
two set of logs on this convex solid. The paper proves
the correctness of the process of minimization, demon-
strates it on a vivid, geometrical example and describes
the basic concepts of computer realization of the algo-
rithm.

Application of different restriction conditions for an
interpretation in granite rock is also given,

INTRODUCTION

One of the main aspects of the complex well log
interpretation is the comparison of the measured logs
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and the response logs. The latter one is created by the
log analyst on the basis of geological, petrophysical
knowledge using the rock model of the area and the
response {unctions of the measurements. The aim of
the comparison is the determination of the par-
ameters of the rock model.

The parameters undergo certain restrictions such
as any fraction of unit volume is between zero and
one. For most wells and for most log intervals when
we have a successful trial of methodology, instrument
and interpretation, these restrictions are fulfilled au-
tomatically (i.e. without any special mathematical
arrangement during the process of minimization of
the difference between measured and theoretical logs).
After all, if because of the erroneous character of the
measurements or because of approximate character
of rock model the result of minimization breaks the
restrictions it does not necessarily mean that the
given field material could not be explained on the
basis of the used rock model. This question finally
must be judged on the basis of the measure of
incoherency between the two quantities. The aim of
the computerized interpretation should be to gain all
the useful information from the field material. That is
why in the case of the above mentioned difference we
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have to form and solve a more special mathematical
minimization task.

From purely mathematical point of view the task
elaborated in the present paper is the minimization of
a quadratic function on a convex body of k-dimen-
sional Euclidian space, where the body is a polihed-
ron, convex hull of a finite point set. The offset of the
existing unique minimum is to be found by the aid of
a series of projections of different dimensions. With
growing k, the number of projections that might be
necessary grows very fast in a non polynomial order.

In bore hole geophysics we have only a limited
number of adequate logs, thus the number of par-
ameters to be determined could not be too high.
Consequently there is a strict connection between the
applied mathematical solution and the geophysical
task: our algorithm is fully applicable, even in a
relatively modest computer, until four, five, six un-
knowns, which cover the needs of loganalysts. This is,
definitely, inapplicable if the number of unknowns is
more than ten. On this price we get a rather exact
solution of the problem of restrictions without the
necessity of introducing penalty term containing sub-
jective construction.

TYPE OF RESTRICTIONS

Suppose we have m different measured log values
at a given fixed depth point, each one is normalized
by its own standard deviation, d"=(b,,ba,..., b,),
and suppose that we have already accepted that our
rock model consists of one fluid and k solid unknown
components xT=(xy, X;,..., X;), where k<m and x7
is the transposed row vector of the column vector x.
We approach each tool response function in a linear
form using the normalized, zone parameter matrix A4
having m rows and k+ 1 columns.

Our aim is to find the parameter vector x for which
A-x is the possible closest to the measured vector 4
on the set of Euclidian space QcR*~!:

fo={ve Q|| b— Ax|*~min}, (1)

where | ||? is the square of the distance in the R"™
vector space.

The simplest condition for the set Q is given by the
material balance equation according to which the
sum of all the components is unity (we involve this
equation into the definition of set Q instead of adding
one more term to the function to be minimized,
because by this way we fulfill the material balance
equation exactly and not only approximately).

We speak about interpretation without restrictions
if we define set Q as

Q=Q,,r={xeﬂ§"'“|,\'0+x1+~-+xk=l} (2)

Definition (2) does not guarantee that all x; are
positive, or x; are less than one, i.e. O0<x; <1 is not
necessarily valid for all x;. I we prescribe together
with the material balance equation that O<x; for
i=0,1,....,k then it trivially follows that x;<I
(i=0,1,..., k), thus we speak about logical restrictions
when we define Q as

3
Xot+xi+ ot x=1 3

0=0, ={‘-E e+ 1 O0<x;, (i=0, ],...,k)}

It should be noted here, that if we project points
of Q, to the (0, xy,Xx,,...,x;) hyperplane of R¥*?!,
then the projection is the k-dimensional simplex
of the (xj,x5,...,x;) R* space, given by the points
Py=(0,0,...,0); P,=(1,0,0,...,0)...; P,=(0,0,..., 1).
This projection allows inversion in the form
Xo= 1=X1—X3, ., —=Xp} X1 =X[5X2=X5) .5 X = X4,
and in this sense we say that @), is a k-dimensional
simplex (embedded into the k + 1-dimensional space).

In definition (3) of Q; we speak about logical
restrictions, because this allows to change x; in the
wider logically possible interval. Another situation is
when e.g. from core lab data we can prescribe more
strict limits for certain components x;. In connection
with this, we speak about geological restrictions if we
define Q as

€ <h, (0O<a;,<b; <),
Q=Q9r= xERk+1 (T=0,1,,I'L)

x0+,\'1+---+xk:1
)

First we notice that definition (4) contains no
contradiction, i.e. set Q,, is nonempty, if and only if

k k
;<] and 1<) b (5)

0 i=0

Second let’s examine again the x=(xg X{,..., X;) =
(0,x1,%3,....,x;)=(x1, x5,..., x;)=x' projection of the
set Q.. Denoting the projection of Q, by Q,,, it is
not difficult to realize that Qg, can be represented in
the following form:

Qp=TinHj 551 -a0: {6)

where

Tk={x'eR"|cz,-éx,-’€-bh(i=1,2,...,lc)}, (7
K

Hr_d={_r’e[l%“|céz x,o’sd} 8)
i=1

which means that @, is the intersection of the k-
dimensional rectangular parallelepiped T, and the
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H, strip like domain R* (domain bounded by two
parallel hyperplanes) with parameters c=1—bh,,
d= 1—ay. Figure 1 demonstrates different possible 0,
restriction sets for the k =2 dimensional case, when we
have two solid components in our rock model.

0, evidently ng,,=k+1. The comparison of these
two expressions of n,, explains how more compli-
cated the task becomes for the case of geological
restrictions, and the reason for restricting our sol-
ution to lower dimensions.

<

2 \ -
1 ' 3 ]
Q >
gr| 7, U E Qgr \&/Qgr
a, NG 9 [N
I I - l -

FIG. 1. Different restriction sets for two solid components model.

The projection above allows inversion in the form
X' =(x}, X3, x>l —Z5 %1, %0, %5, ..., X)) =
(xp,X1,...,%;)=x and in this sense we say that Q,, is
a k-dimensional polyhedron (embedded into the k+1
dimensional space).

It is not difficult to realize, that Q,., Q, and Q,,
are convex sets, i.e. from x,,x; € Q it follows that
oxg+ (1—o)x; € Q for any O<a< 1.

During the process of minimization a pivotal point
is the characterization ol the Q sets by his ver-
texes, i.e. representation of O as the convex hull
k(Py, P1,..., P,), which is the narrowest convex set
containing all the P; points. For @,, this representa-
tion is not possible and not necessary, for @, we have
already described the vertexes of the simplex. Let’s
find the vertexes of the Q, set. As the representa-
tion (6) of @, shows in order to reach this aim we
have to examine whether the jth edge of the rectangu-
lar parallelepiped T, is completely inside, completely
outside or intersects once or twice the strip
H|_po1-4,- The only difficulty at this stage is to
create an algorithm, which runs over all the edges of
the rectangular paralielepiped.

For the sake of simplicity let’s examine instead of
block T, the equivalent in this respect to the unit
cube. The k-dimensional unit cube has k-2*¥~! edges,
and two peak points of the cube are connected by
edge if and only if there is exactly one coordinate
where the two peak points differ. Figure 2 shows the
edge system of the unit cube of R* Ordering the
peak points of Fig. 2 from up to down and if the two
points are on the same level then from left to right
and directing edges from the smaller to the higher
points, ie. }TPT is directed edge if P,—P}} is edge and
P;< P;, we can order the edges by stating I?P:<ITP,;
if P;<P, or in the case P,=P,; if F,<P,.

The n value in the w(P;, Ps,..., P;) representation
of O, depends on the a;, b; values of definition (4). It
is not difficult to prove that the possible maximum
value for 1 is ny,, =24+ 2+k—2, while for the simplex

@ (0,0.0.0)

@Mmi%@ 10,0,0.1)

\ (0,0.1,1)

FIG. 2. FEdge system of unit cube of four dimensional
Euclidian space.

In their study (Mayer and Sibit, 1980) [1] introduc-
ed other nonlinear restrictions (constraints) as well.
Comparing the technique of the present paper to that
of [1], we notice that even thought the method
described in this paper can only be applied to lin-
earized restrictions, it is not necessary to introduce a
second term in expression (1) which contains subjec-
tive parameters.

ALGORITHM OF MINIMIZATION

Our aim is to minimize the quadratic function in
expression (1) on the set @ =x(Py, P,,..., P,) which is
a convex hull of points P; e R*,

In the three-dimensional space we know that a
convex solid is surrounded by two-dimensional poly-
gons, by one dimensional edges and by the zero-
dimensional P; points itself. For the sake of concise-
ness of description of our algorithm, we state that Q
has a three-dimensional surrounding solid as well,
namely itself. For example any tetrahedron of R?
surrounded by the tetrahedron itself, by four tri-
angles, by six edges, and by its four vertices (peak
points). This complete system of surrounding
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configurations we refer as system of boundary hyper-
plane configurations,

Similar construction can be done in the Euclidian
spaces of higher dimension. Basic concepts of this
construction are that of the linear algebra and the
rank concept of matrices, see e.g. [2]. The exact
mathematical construction is reported in [3]. A com-
puter program has been developed to find the
system of boundary hyperplane configurations of
the k(P,,P,,....,P,) = R* convex solid. We have
checked the result of the program for a number of
two- and three-dimensional solids, for the cubes and
simplexes of higher dimensions, since these are the
bodies for which the results are known [rom theoreti-
cal consideration. For example the system of bound-
ary hyperplane configuration of the unit cube of
space R* consists of the cube itself, 8 pieces three-
dimensional (ordinary) cubes, 24 pieces of squares, 32
sections, and 16 peak points. This is the result of the
computer program but it can be proved theoretically
as well or, in principle, it can be checked directly from
Fig. 2.

Knowing the complete system of boundary hyper-
plane configurations of the convex solid we can
describe the algorithm of the minimization. First we
note that if matrix 4 in expression (1) is not singular
on the Q set, then the system of boundary hyperplane
configuration of Q preserves its structure after the
AQ={Ax|x e Q} injection of Q into the space of
normalized measurements R”. Secondly, we know, as
the result of convex analysis, that our quadratic
function has one and only one minimum value on a
convex body, in other words %4 of expression (1) con-
sists of one and only one point.

Now let us study together with each element of the
boundary hyperplane configuration the hyperplane of
this configuration, i.e. the smaller dimensional trans-
lated linear subset of the R™ space which contains the
whole configuration. On this plane we can divide the
points of the given configuration into inner and
boundary points. Let us state that the zero dimen-
sional P; peak point’s interior is the P; point itself.
Then by finding the interior of every configuration of
the AQ convex solid, we create the division of the
convex solid AQ into disjoint sets. In this way, from
the relation Axge AQ, it follows that A£, is an
element of the interior of one and only one configur-
ation. ;

Now, let us study the following algorithm. We
project the measured vector & of (1) for all the
boundary hyperplane. If the projection, related to
the given hyperplane configuration, is outer point or
boundary point then we drop this point. Let us
denote the set of projections of b, if the projected
point turned to be inner related to the jth hyper-
plane configuration by {b;, j € J}, where J is an index
set of the configurations. Note that for any zero-

dimensional hyperplane the projection of b is P;, that
is an inner point, thus the J set is nonempty, i €J.
Let us suppose that A + £, belongs to the interior of
the configuration enumerated by index j, € J. Projec-
ting b to this hyperplane, the projection by, is also in
the interior of the configuration, otherwise the inter-
section of the section [A* g, #;,] and the boundary
of the joth configuration is closer to & than A- %,
which is in contradiction to the definition of .4 of (1).
Because b;, is in the interior of the joth configuration,
so A%y = b;,. The j, index is not known in advance,
but we can choose it easily from the set of those
projections where 4; is inner point, getting in this way
the solution of minimization problem (1) in the form

A-$o=1{b;: je J|| b—b,]|*~min} (9)

A is not singular on the set @, thus the mapping
of Ax allows inversion on the set {4-x|xeQ}cR™,
therefore knowing point A%, we easily find ¥y itsell.

The algorithm above is correct and complete, but
we can speed it up considerably by the following
additional considerations. If we find that the projec-
tion of & for the jth boundary hyperplane configur-
ation is inner, then it is meaningless to project b for
any further configuration which is a part of the jth
configuration. Because in this case the further projec-
tion necessarily gives a higher distance, as the mini-
mum in a subset of a set is not lower (in the given case
definitely higher) than the minimum on the set itself.
This observation also means that we organize the
order of projections not arbitrarily, but going from
the higher to the lower dimensions. For example if
the first projection of b to the k-dimensional hyper-
plane of AQ configuration turns to be inner, then we
can finish the process, because all the other (lower
dimensional) hyperplane configurations are parts of
the complete body, consequently this first projection
gives the 4- &y point. This will be the more frequent
case if the field material and theoretical curves fit
each other, especially working with logical restric-
tions Q.

To illustrate the work of the algorithmic steps let
us study the situation below designed for simple but
substantial geometrical presentation. Let k=m=3
the normalized measured vector b=(—%, —%, —4),
and consider the logical restrictions 0,,— R* defined
by the conditions

Xotx;+xa+x3=1,
x20,(=0,1,2,3) (10)

Projecting @, for the x=(0, x,, x5, X3)=(x], x5, x5) =
R hyperplane we get 0}, by the inequations

X +x3+x3<1,
xi20,(i=1,2,3) (11)
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and there is a one-to-one correspondence between
0, and Q. The inequation system (11) indicates
that Q;, is a tetrahedron, the convex hull of the
Py=(0,0,0); P, =(1,0,0) P;=(0, 1,0); P3=(0,0, 1)
points, O/, =«(Py, P, P5, P3). Now, for the aim of
getting a vivid geometrical picture let us choose
matrix 4 in the form

QO = O

0
0. (12)
1

o O

which is nonsingular on Q, and on the xg+x;+
X3+ x3=1 hyperplane. In this case AQ,, is completely
identical with Qy,, so our task is to find the nearest
point of @, to the b=(—1%, —%, —1) point, see Fig. 3.
We remark that for a less artificial matrix A than that
of (12) the character of the minimization process
remains similar.

b

FIG. 3. Geometrical representation of the process of
minimization for the case of logical restrictions for three
solid components model.

Following our algorithm first we realize, that b
is outer point to the tetrahedron PyP,P,P;, thus
we have to project b to the four boundary triangles.
We found that projection ol b is outer to triangles
PyP,P,,PyP, Py, PyP,P4. Let us denote the projec-
tion of & for the P, P, P, triangle by b,.3. Because of
symmetry b,,3=(3,3,3) which is an inner point of
the triangle and | b—b,,;3] = 1/\/3+\/§/4. Now as
was pointed out earlier it is needless to project & for
the sections P,P,, P,P;, P,P; and for the points
P,,P,, P, because these boundary configurations are
parts of the triangle P, P,P5. There is no more two
dimensional configurations, so we project b for the
sections PoP,, PoPa, PoP3, and we found again that

all these projected points are outer related to the
given sections. Thus according to our algorithm we
project & to the only remaining vertex P, and the
result of it is trivially bg=Py=(0,0, 0) with distance
| b—bo H=ﬁ/4. In this way the set {b;, je J} now
looks like {by13,bp), ie. consists of two elements.
Because ||b—by || < | b—by23 ]|, thus from (9) we get
that the minimum point is Afg=>50,=(0,0,0), from
which using (10) and (12) we get the final result
To=(1,0,0,0).

As to the computer realization of the algorithm we
made the following arrangement. We define a tabile,
each line of which is related to one of the boundary
hyperplane configurations, and we associate to each
line the so called status variable of logical character,
which may have the following values: ‘U’ if the
projection is Unexamined yet, ‘O’ if the result of
the projection is Outer, ‘I’ if the result of the projec-
tion is Inner, and ‘N if the realization of the projection
is Negligible. Using the scheme presented in Table 1,
the realization of the algorithm is the following:
As initial value we set the status of each line for ‘U".
Then we repeat the only step until there is at least one
status ‘U’ in the table. This step is to find the higher
dimensional line in the table with status ‘U’, then
project b to the hyperplane associated to that line and
decide whether the projection is Inner or Outer. If the
status is ‘0’ then we drop the resuit of the projection,
if the status is ‘I’ then we keep it and we set the status
of all sub-configurations for ‘N’. After completing this
loop we choose the minimum distance from the lines
with status ‘I°. Table 1 is the realization of the
algorithm for the geometrical illustration above. The
column Sty denotes the initial status values and
actually we made nine projections, thus Sty is the
column where the main loop of our algorithm is
ended. In Table 1 we marked with a circle the only
two places where we kept the result of projection and
we calculated the appropriate distances, Of course for
more complicated bodies and for higher dimensions
the size of the defined table is extended.

APPLICATION

Let us see the practical consequences of the use of
different restriction conditions at the evaluation of
volumetric components of a fractured granite rock.
The logs involved to the quantitative interpretation
are the neutron density, the neutron porosity, the
acoustic, the photoelectric index, the thorium and the
potassium spectral gamma logs, so in the given case
m=06. For the sake of accurate porosity estimation we
divide the rock matrix for the quartz, the feldspar, the
mica and heavy minerals and the pyrite components
(k=4). The normalizing measure of uncertainty of
the logs and the used, slowly changing, parameters
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Table 1. Computer Realization of the Process of Minimization for the Case of

Fig. 3
P P, PP, v?%Sé o?igét St St [St,Stylst 5t stdst stlst,
1111 U |o o lo [o |o |0 |o |o
1110 u|uljo oo |o |o|o |o o
1101 ulu(u lo]oJo oo oo
1011 JululululoJo Jofo]o|o
o111 ]me] 65 Jululu fulu{o) ]z |1z
(1100 ulvuluJulu [ |o|o o Jo
1010 ulvlululuiululolo (o
1001 uluifu fulfululululo]o
0110 ululu fuluw[v]n]nln
0011 uluflu fulu e In]nn]n
0101] ululu Jufu v v [N N
1000w | e |ylujulululufuulu(s)
0100 ululu julu v |[nn|n]w
0010 ulufu Jululw[n{n[w]n
0001 ululululu | |wln|n]|n

are close to that published in [4] with exception of
the parameters of the pyrite which in the above order
of the logs are (4.07 g/cm®, —0.03 unit, 38 psec/foot,
15,77 barn/electron, 2.0 ppm, 0.7%).

For completeness we include to our discussion the
following heuristic approximate solution of the prob-
lem of logical restrictions (1) and (3) which, as far as
we know, is incorporated in many log analyzing
programs. This solution consists of two steps. First
we calculate as a result of one simple projection the
vector solution %y, =(xg,X;,...,x;) of the problem

(1) and (2), then we modify this vector in the following
way

max {0, x; }

: (=0, 1,..., k)
Y. max {0, x;}
i=0

(13)

Njp =

which means we round the negative components X; of
Xp,. for zero and we divide the other components by
the sum of positive components in order to ful-
fill the material balance equation. It is clear that

Table 2. Results of Interpretations under Different Restriction Conditions at
a Massive Granite Zone (+ denotes that the given value is a boundary value)

9381, ht Qz Fp MéHm Pr ING
Qnr 0380 L4947 .4359 L0437 -.0123 . 308
Pir .0376 .4887 .4306 .0432 L0000 .458
QRr L0408 4741 L4577 .0274 .0000%* .399
Qer .0452 .4407 .4932 .0009 .0200% .731

Table 3. Results of Interpretations under Different Restriction Conditions at
a Fractured Granite Zone

9397. ot Qz Fp M&Hm Pr INC
Qnr 1292 7610 -.1480  .188B3  .0695 1,55
PIr 1125 .6629  .0000% .1640  .0606 2.12
Qfr 1371 .6507  .0000% .1223 0898 1.75
Qgr .1400  .6062  .0600%* .0859  ,0978 1.92
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FIG. 4. Incoherency as a function of depth between 9370 and 9400 feet.
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FIG. 5. Porosity estimations on the log section of Fig. 4.

(xg,X1,..., X;) € Oy, s0 we denote the modified vector
by xp, and we call it as proportional approximation
of problem (1) and (3).

Let us study the result of different interpretations
in the granite rock, first at the depth 9381 feet (Table
2). Evidently the no restriction case gives the smallest
incoherency ||h— Ax|, but because of the negative
pyrite content, £, could not be accepted at all, in
other words the probability of occurrence of the rock
components &g, is zero. According to formula (13)
the modification of £, which is the proportional
approximation £ _ eliminates the negative pyrite
content, but necessarily gives a higher incoherency
than the exact solution &g, .

The change in the main porosity component is not
significant and the interpretation based on any of the
four curves in Fig. 5 indicate that we are in the
massive granite zone.

Table 3 shows the results at the depth 9397 feet.
Here we have a higher negative feldspar component.
Because the sum of the positive components is
more than one, and because practically we shall not
find negative porosity estimation in the solu-
tion of the @,, task, thus the porosity of the propor-
tional approximation is less than the original one. On
the other hand the exact porosity estima-
tion offered by %,, is found to be higher in the
present example than that of £, . This means that
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the proportional approximation results could not be
considered as a good approximation of the Q,, task
(1) and (3). This statement becomes especially clear
having in mind that the modifying step is not a
funetion of the matrix A of (1),

Figure 4 shows the incoherency of different cal-
culations on the depth interval 9370-9400 feet. We
can see that, with the exception of those intervals
where the @, restrictions fulfill automatically (e.g.
9370-9375 feet) and consequently £, =xp, =%g,,
the decrease in incoherency of £y, related to xp,
is considerable. In Fig. 5 we can follow the
porosity estimations obtained by different calcula-
tions. Despite of the considerable changes in in-
coherency, the porosity shows a relatively stable
character, especially in the massive granite inter-
vals. This emphasises again that the porosity is
not only the target parameter of the complex well
log interpretation but the most robust one. However
difference between the porosity estimations of O
and P, is not negligible in the fractured zones
and this fact tells about the usefulness of the exact
problem solution.

In the case when we have additional informa-
tion about mineral contents, then we solve the geo-
logical restriction task (1) and (4). For example if
we know that pyrite content is more than 2%
and feldspar content is at least 6%, i.e. a;=0.02 and
a3=0.06, while all other limits are zero and one,
then we get the results shown in Tables 2 and 3 and
the appropriate curves of Figs. 4 and 5. The inco-
herency belonging to the solution £, is necessarily
higher (or equal) than that of the &,,. But if this
increase is not so dramatic (this is the case at 9397 or
9393 feet), then we should accept this solution, which
is in accordance with the geological knowledge of the
given area.

CONCLUSION

- Restriction conditions of well log interpretation
can be represented or approximated in the form of
defining the domain of minimization as a convex
solid of a higher dimensional space.

- Rather exact algorithm for the minimization of
a quadratic function on a convex solid can be
worked out on the basis of elementary projections
of different dimensions.

— Application of the exact algorithm reduces the
incoherence between measured and theoretical logs
and in some fractured zones of granite rock effects
for the porosity estimation are considerable.
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