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IMPROVEMENT OF THE ACCURACY OF STATISTICAL WELL LOG
INTERPRETATION USING THE MATERIAL BALANCE EQUATION

G. Szigeti”
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ABSTRACT

In the determination of the porosity of the rock bulk
drilled through the oil well, we compare the measured
physical quantities and the calculated quantities given
by the idealized, theoretical rock model. The compari-
son gives stochastical equations. Supposing that the
measured log is a random variable with expected value
given by the theoretical model and with known vari-
ance, we can determine the statistical estimation of the
volume fraction of the porosity and other mineral
components and the variance of those quantities. If we
involve the exact, theoretical material balance equation
into the system of stochastical equations, as a stochas-
tical equation tending to zero standard deviation, then
the variance of the porosity and other mineral compo-
nents will be decreased. The consideration of the ma-
terial balance equation requires the use of the cyclical
determinant instead of the regular determinant.

INTRODUCTION

An important task of the log survey is to determine
the porosity of the rock bulk drilled through the oil
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well. For this reason the minerals of the given rock
matrix are grouped on the basis of their physical
properties which affect the given logs, and the task is
to determine the volume fractions of each group.
During this process all available logs which help to
solve the problem are put in use.

The method of finding the volume fractions is to
compare the measured physical quantities with the
calculated quantities given by the theoretical descrip-
tion of idealized rock model containing the parameters.

Because of various reasons (see [1]) the measured
quantity is a stochastical one; accordingly we have to
consider it as a random variable. If only the first
moments are known (i.e. the expected values) of these
random variables, then as it is proved in [2], we can
not get information on the rock volumes. Nevertheless
knowing the second moments as well (by which the
standard deviations of these variables also will be
known) and assuming that, first, the measured quanti-
ties vary around the values of the theoretical model and
second, rather large (infinitely large) number of obser-
vations, there is a possibility to restore the volume
fraction parameters of the theoretical model. Enforcing
the first assumption and taking into consideration that
in a given depth point only a few stochastical observa-
tions are available, it is clear that the parameters to be
determined are also stochastical quantities i.e. we can
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determine only the probability of the event, that the
parameter belongs to a given section around the
expected value.

During the process we consider the theoretical rock
model which is defined by us, however not arbitrarily,
as a certain model and not as a stochastic model. Asa
consequence, there is a basic difference between the
stochastic vector equations of measured and theoreti-
cal values, and between the exact, purely theoretical
material balance equation.

In the limited number of publications dealing with
the complex process of interpretation of well log
measurements (see e.g. [4], [5]) we could not find
information about the fact, or about the manner of
the above mentioned difference. According to our
knowledge, part of log analysts proceed the following
way: first they determine the volume fractions with-
out using the material balance equation, and after
that, they interpret the difference of the sum of
components from the unit as a quantitative descrip-
tion of the quality of the interpretation process. We
consider this procedure from a logical point of view,
as a correct one, but not as the possible complete one,
because it’s inaccurate to ignore the only certain,
exact equation in the determination of the volume
fractions of mineral components.

FORMULATION OF THE PROBLEM
AND SUMMARY OF THE STATISTICAL
RESULTS

Let us suppose that we have m different log data at
given depth point of the bore hole, and we divided the
unit volume of the surrounding rock for k+ 1 mineral
components as Xy, X;,..., X 50 that

Xo+xp o+ x=1 (1)

(We begin to enumerate the x; components from
zero, because we suppose that the rock has k solid
components and x, is the fluid component, which is
in our case the main parameter, namely the porosity).

Let us suppose that each log can be described as a
linear function of unknowns xg, x,,..., x;, and all the
measured logs are random variables according to the
one dimensional normal distribution, with known
standard deviations o, ©,,... o, and with expected
values which are the results of that linear function in
a certain, unknown point %g, %;,...,%;. Normalizing
the coefficients of the first linear function and the first
measured value by o, the seconds by o, and so on,
we can write

Ay Xo+ay "X+ +ay - =b;

A20* Ko+ Ay X+ G=bs (2)

amO'xD-l_aml Y +"'+amk.xkzbm

where a;; is the normalized jth coefficient of the
ith linear tool response function, b; is the normal-
ized ith log, which is not necessarily the originally
measured log, but a modified form of that, after
different transformations like filtering, depth match-
ing, etc.

According to the assumptions the right hand
side of (2) is a random variable with normal dis-
tribution. The expected value of each b; is the
expression standing on the left hand side of the ith
equation and the variance of each b; is 1. In addi-
tion we shall suppose, that for any i#j the b; and
b; stochastic variables are independent of each
other.

Denoting the set of matrices containing i rows and
m columns by ./, and the set of vectors, containing
k elements as one row by 7, the set of equations (2)
can be rewritten in matrix form

Ax=b 3)
Where A € "//m.k-v— 1» Q EY ;m XE 1;‘+ 1
and i: (.\Eo,i:],...,.{_k).

We consider that the statistical results, which can
be summarized as follows, are well known to the
reader (see e.g. [3], page 260). Keeping in force all the
assumptions related to b, among all the linear statisti-
cal estimations o for the solution of the overdeter-
mined linear system of equations (3), the smallest
variance given by that g, which satisfies the Gauss
normal equation

(AT~ A)yu=A"b 4)

(AT is the transpose of matrix A).

In this case o is unbiased estimation of %, i.e. the
expected value of u is %.

In this way according to Cramer’s rule, the ith
component of o can be calculated from

T, 4y
ot,-=de[[(A : A1 (5)
det[{4"-A)]

where AT -Ae Mysiper; (AT AV € llivipar 15
the matrix in which the ith column of the matrix
is changed to the right hand side vector of (4). The
variance of o;, denoted D?*(w;) can be calculated
from

5 det[(AT- A);]

A = (6)
det[(AT - A)]

where AT+ A is the same as above, and (47-A); €

My is the matrix obtained from the matrix A™+ A by

omitting it’s ith column and it’s ith row.
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INVOLVEMENT OF THE MATERIAL
BALANCE EQUATION INTO THE
STOCHASTICAL SYSTEM

During the investigation of the system of equations
(2) all the equations had a statistical character. How-
ever, equation (1), is not stochastical but a certain
one. The simplest way to eliminate the difference
between equation (1) and equation (2), is to handle
the right hand side of (1) as a stochastical variable
with unit expectancy and with a variance, which
tends to zero.

Accordingly let £, be a stochastical variable with
Gaussian normal distribution, with the expectation
value 1, and with the variance o2,

ME)=1 D*E)=c" (7)

Denoting 1/g by s and so s=1/c tends to in-
finity, then the stochastical variable s-&, shows the
behavior

M(s-E,)=s; D3(s-E.)=1 (8)

Handling equation (1) in this way, now the system
of equations (1) and (2) for xq, x1,..., x; looks like

S xg+s x4 +srx=by

Ao Xo+ay "X+ - +dy X,=b, 9)

(o * Xp + lyy * X1+ -+t X =by,
where
Py e (10)

We shall apply the same statistical results for the
system of equations (9), which have been applied for
the system (3). Accordingly, taking the special struc-
ture of (9) in consideration, in analogy with (4), the
unbiased statistical estimation B of xq,x;...x; of (9)
fulfills the equation

(AT-A+5*-E)-B=A"-b+s*-¢ (11)

where A e.#,,,+, is the matrix of equation (2),
b e 7, is the vector on the right hand side of the same
equation. E € .1, 4+, is the matrix each element of
which is unit, while s is given by (10). In the case when
s tends to infinity, the estimation B of (9) and (10)
gives the statistical estimation of the system consisted
of (1) and (2).
So, in full analogy with (5) and (6) we get

. det[(AT- A+s*-E)]
Pi=lim det[(AT- A +s7+E)]

and

3 . det[(AT- A+5s* E)y]
D)= AT A5 EN (t3)

(Note that according to (11) at the calculation of
the numerator of (12) the (A7-A+s*-E) matrix
preserves its structure, having the s second term
after replacing the ith column by the right hand side
of (11), because the right hand side has the same
second term).

The limit process in (12) and (13) can be derived in
a simple form. On the basis of algebraic type results
given in the Appendix, the derivation gives us the
following final form for the statistical estimation B:

_cyel det[(A7-4)]

“cyel det[(AT- A)] (14
and

20y cycl det[(47- A)y]

(B)= cycl det[{AT+ A)] (13)

where all the matrices in square brackets are exactly
the same as in formulas (5) and (6), but instead of the
regular determinant, p; and D*(p;) can be expressed
by the “cycl det” operator, which is defined as follows:

For an arbitrary C € .#,, matrix cycl det is the
sum of n determinants:

cycl det C= ) det[C,] (16)

i=1

where C; e .#,, is developed from C by replacing its
ith column by ee ¥,,e"=(1,1...,1).

Comparing (14), (15) with (5), (6) we can say, that
the effects of consideration of the material balance
equation in statistical estimation of volume {raction
parameters, is that instead of the regular determinant
calculation, we have to calculate the cyclical determi-
nant of the same matrixes.

EXAMPLES

First we illustrate how the two different ap-
proaches work on a simplified “artificial” case. The
rock matrix consists of the quartz component only.
Qur task is to determine the porosity filled up by
interstitial water, using the acoustic, density and
hydrogen index logs, and to determine the standard
deviation (the square root of the variance) of this
quantity, which displays a Gauss normal distribution



as a result of the assumption that the measured logs
show Gauss normal distribution as well.

Table la shows the slowly changing, or the so
called zone parameters of each rock component for
each log and the standard deviations of the measure-
ments.

The calculated results for the standard deviation of
the porosity are given in Table 1b using the three
different possible combinations from the three differ-
ent logs, without the use of (formula (6)) and with the
use of (formula 15)) of the material balance equation.
It can be noticed that the standard deviation is
decreasing in all cases as a result of the presence of
the material balance equation. The largest decrease is
shown by the (HI, At) pair, while the most accurate
way of solving the porosity determination, using two
out of the three logs above, is offered by the (HI, p,)
combination.

Szigeti

The second example is a more complex one from
the practice of geophysical interpretationl. Here the
bore hole intersects fractured granite rocks while
the fractures are partly filled with zeolite as a result
of hydrothermal processes. We have neutron density
(py), neutron porosity (HI), acoustic (At), photo-
electric index (P,) and two different spectral gamma
ray (Th and K) logs. According to these condi-
tions quartz (Qz), feldspar (FP), mica and heavy
minerals (M & Hm), zeolit (Zeo) and total porosity
(¢,) filled up by interstitial water are the main
mineral groups in the volumetric rock model. The
upper part of Table 2 contains the zone para-
meters and the standard deviations of the log
measurements. The lower part of Table 2 shows
the standard deviations of the volume fractions for
each mineral group without and with the material
balance equation taken into account. Comparison

Table 1a. Slowly Changing Parameters of the Two Mineral Components Model

Mineral group

Tool

Standard deviation

Water Quartz of the measurement
acoustic, At
[usec/foot] 185.0 520 5.0
density, py 1.08 2.65 0.05
[g/cm]
hydrogen index, HI
[dimensionless] 0.93 —0.02 0.01

Table 1b. Standard Deviation of Porosity Determination in
Percentage Without and With the Material Balance Equa-
tion Being Taken into Consideration

Standard deviation (%)

Used logs

without with
(At, ps) 247 243
(HI, py) 1.92 1.00
(HI, Ar) 9.62 1.14

of the two last rows of Table 2 shows again that the
uncertainty of the interpretation, belonging to a given
level of probability (in our case, ic. in the case of
Gaussian distribution and standard deviation this
probability level is 0.6827) decreases by involving the
material balance equation into the estimation. This
decrease is less in the case of Table 2, than it was in
the case of Table 1, which is related to the fact that
the dimension of the equation system, in the second
case, is higher.

Table 2. Slowly Changing Zone Parameters of the Five Mineral Components Model and the Standard Deviation of the Volume
Fraction in Percentage Without and With the Material Balance Equation Being Taken into Consideration

Mineral Group

Tool Standard deviation
t 0z FP M & Hm Zeo of the measurement

py [2/em?] 1.08 2.65 2.55 3.01 2.11 0.05

HI [dim. less] 0.93 —0.02 —0.03 0.05 0.01 0.01

At psec/foot] 185.0 52,0 55.0 41.0 60.0 5.0

Pe [barn/electron] 1.13 1.85 2.86 42 1.78 0.5

Th [ppm] 2.6 1.8 17.0 40.0 50.0 1.0

K [dim. less %] 0.68 0.68 7.0 4.0 7.0 1.0

Standard without 1.03 6.09 8.32 5.68 6.98

deviation

% with 1.00 5.51 8.29 3.79 486
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SUMMARY

In calculating the volume fractions of mineral com-
ponents by means of complex well log interpretation,
the accuracy of the determination of these fractions
can be increased by invelving the material balance
equation into the interpretation system. The calcula-
tion of the standard deviations of the volume percen-
tages becomes only slightly more difficult, as a result
of taking the material balance equation into consider-
ation. Whereby the regular determinant is replaced
by the cyclical determinant operation. Practical
examples show, that in some cases the increase in
accuracy is significant.
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APPENDIX

Here we dicuss the limit process used in the deri-
vation of formulas (14) and (15).

Let Ce.#,, be an arbitrary matrix and Ee %, ,
the matrix, each element of which is the unit. Then for

any number p
dt{C+pE)=p-cycl det C+det C (al)

here we use the notations used in the paper. The
definition of the .#,, can be found before expression
(3) and the definition of the operator “cycl det” is
given by formula (16).

For providing eq. (al) let us denote the column
vectors of C by ¢y, ¢a,...c, and the columns of E by
e. Then we have

det(C+pE)=det(c,;+p-ejca+p-e...,c,+pre) (a2)

where on the right hand side there is just another
notation for the matrix under discussion.

For two arbitrary vectors a,be ¥, and for any
index i

de[(ﬁ]’QEﬂ”-agi—15Q+Q9£i+1 "'9£|l)
=det(21,£2,.-.,Q,..-,Q,,)
+det(.{:’:l?£2"'b1"'gll) (33}

and for any indexes i, j,; i#]

det(cy,Cayees Cim 13 PELCiatsvens

Ejan PO fymves By =0 (ad)

The two last identities express obvious behavior of
the determinant operation, they can be proved easily
starting from any definition of the determinant.

Repeatedly applying (a3) to the right hand side of
(a2) we get the sum of 2" number of determinants, but
on the basis of (a4) only n+1 out of them differ from
ZETO!:

det(c-l-pE):P'{dBt(g, g:!""sgﬂ)
+det(gl! €,€3,---5 Qn)+ +det(£‘15g2,"'e£)}

+det(gl1£lv"'1§r1) (35}

This shows the validity of (al).

Now let Ce.#,,.Be.;, and E, e .#,,, E €
M, be the matrices each element of which is unit
and suppose cycl det B#0.

Then on the basis of (al) the equation

- det(C+p-EK)_cyc1 det C
p—w det(B+p-E,) cycldet B

(ab)

is a simple limit process for the ratio of linear, related
to p, functions.





