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THE APPLICATION OF GRIDREFINEMENT, GRIDGATHERING AND
MOVING GRID IN EOR SIMULATION

Z.E. Heinemann® and C. Brand*
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ABSTRACT they are gathered again when the front has passed
them. By gathering the blocks outside the EOR area,
the overall block number can be reduced considerably

Diblack il :simulation, the areal block size can have without neglecting the influences of the environment.
a magnitude of 100 m by water drive and can extend to An example for missible hydrocarbon gas drive illus-
1000 by depletion drive. EOR‘disp lacement processes trates the combination of dynamic grid refinement and
such as miscible and steam drive, surfactant ﬂood.r'ng gathering, showing that a field scale EOR displacement
o GEsIR IR oL regire.L0 fo 0.5 m grid spacing. can be simulated with small block size without exceed-
This is technically impossible in field scale simulation ing the technical and economic limits.

which uses a conventional Cartesian grid.
This paper, based on the control volume discretiz-

ation technique, shows that local grid refinement INTRODUCTION
is a straightforward extension of industry standard
methods. Applying some simple rules, the locally re- Numerical simulation has become one of the most
fined grid is strictly orthogonal, even at the fine-coarse important tools to solve complex reservoir engin-
grid transition. This orthogonality is a fundamental gering problems. Based on a mathematical descrip-
requirement to make sure that the numerical solution tion of the physical system, a set of non linear
converges to the true one if the grid size is reduced. differential equations are solved numerically and the
Since small block size is only required at the displac- result is compared with the observations. By tuning
ing front, local grid refinement is applied only in this reservoir parameters, called history matching, a nu-
area and moves forward in time. With dynamic grid merical reservoir model is created which is able
refinement, the down-streams block ahead of the front to reproduce the real reservoir performances and
are subdivided before the displacing front arrives and gives the possibility of predicting future behaviour.
A good fitting neither confirms the mathematical
*HOT Engineering Ges.m.b.H., Austria description nor proves the accuracy of the numerical
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The Application of Gridrefinement, Gridgathering and Moving Grid 11

solution or genuine reservoir data. Inaccuracies on
one side are counterbalanced by deviations on other
side. This circumstance does not restrict the applica-
bility of the model provided that no greater change
in the reservoir mechanism takes place. _

In black oil simulation, the mathematical descrip-
tion is simple and well defined. The result is not
seriously influenced by the numerical solution tech-
niques in use. The number of system variables is
limited and identical in time and space. However, it
is important that enough observations are available
to«confirm the reliability of the numerical reservoir
model.

When dealing with enhanced recovery processes,
the situation is rather different. A large variety of
methods exists and the possibilities in mathematical
description are wide spread. The physical and chemi-
cal natures of the ongoing processes change dramati-
cally in time and space, differing fundamentally from
the primary ones. The history matching based on
black oil type simulation gives no or very limited
guarantee for realibility of the EOR prediction. In
most of the cases is it inaccurate to speak about
simulation, because no possibility is given to compare
the model with observations of the real reservoir.
What normally is done is simply mathematical-nu-
merical modelling the reliability of which can only be
based on the complete and correct mathematical
formulation, on the accurate numerical solution and
the complete and proper accounting of the influence
of reservoir properties.

This paper focuses on gridding to show the nec-
cessity and practical applicability of grid refinement
and gathering, Local grid refinement is necessary to
get enough small blocks at the area of interest and
gathering makes it possible to consider the environ-
ment without spending computer time and money to
calculate unneccessary details. The possibility to
change the grid over time, by the user or automati-
cally, increases the flexibility of these techniques con-
siderably. The methods are applicable for modelling
of miscible drive, polymer and surfactant flooding,
steam drive and in situ combustion and also for
conventional black oil and compositional simulation.

FINITE CONTROL YVOLUME FORMULATION
OF THE FLOW EQUATION

The reservoir system is formed by the formation
rock given the frame for the pore space and K
chemical components. The pore space is filled out by
P phases, may be vapor, liquid or solid. Each fluid
phase contains up to K chemical components.

The first and most fundamental step in the devel-
opment of any reservoir simulator is the description
of the physical phenomena by a set of equations. This

equation system contains mole (or mass) balances for
each component and one energy balance equation.
Additional information, in the form of constitutive
equations is needed to define the intrinsic response of
the material in question. They [ormulate the relations
between driving forces and transport velocities and
the mathematical properties (as densities and viscosi-
ties) to the state variables. In reservoir simulation,
conditions of thermodynamic equilibrium are com-
monly assumed. The assumption of equilibrium,
while questionable in many situations, plays an im-
portant role in the derivation of the final form of the
mathematical model.

The equation system in question is very complex
and non linear. Analytical solution is possible only
after strong simplifications, thereby losing the ap-
plicability to real reservoir problems. Though a
number of numerical techniques have been tried,
almost all such problems are solved through the finite
difference method. For this reason, the discussion in
this paper is limited to this method.

The finite difference method, especially in the form
of the finite volume technique, has some theoretical
and numerical advantages. The difference equations
can be easily identified with the corresponding differ-
ential equations and the solution of the finite differ-
ence equations is more straightforward. Most import-
antly it is possible to identify the numerical terms
with the reservoir ones. The control volume repre-
sents a defined part of the reservoir and all properties
and variables assigned to the grid point are averages
for this volume.

Before going on to solve the equation system,
certain substitutions are made to reduce the number
of unknowns and equations per grid point. The phase
pressures, except one, are eliminated through the
capillary pressure equations, a part of the mole frac-
tions are eliminated using mole constraints and phase
equilibrium conditions, Darcy’s law is substituted to
eliminate phase velocities as variables. The variables
eliminated by substitution are called secondary. They
do not eliminate primary variables. Some of the
primary variables existing only in equations belong-
ing to one grid point can be eliminated by partial
elimination. The variables solved simultanecously for
all grid points are the implicit variables. The elimin-
ated the explicit ones.

With growing complexity of the mathematical de-
scription, increases the variety for selection of pri-
mary-secondary and implicit-explicite variables and
the resulting equations bring advantages and disad-
vantages by the numerical solution (more or less
stability, higher or lower convergence rate by the
Newton iteration, etc.). One of the advantages of the
finite difference method is that substitution and par-
tial elimination can be done before and after dis-
cretisation. It is possible to do it algebraically or
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numerically assuring great flexibility, especially im-
portant when dealing with EOR models. The wide
range of EOR technologies and possible description
of the physical phenomenon requires such a flexibil-
ity.

An integral approach similar to the one described
by Nghiem [1], and Pedrosa and Aziz [2] is applied
to derive the multiphase flow equations.

The conservation of mass for the component k:

_jj |: i ﬁpéivxpk]wk:| HdA -+ j.[.[ g M, dV
= i § M, |dV. 1

¥ is a finite control volume around the grid point [
(Fig. 1). The first term on the left-hand side is the
convection term. Its physical meaning is very easy to
understand. i, is the phase velocity with dimension
m/s = m3/(s m?) and gives the phase volume flowing
per second through a unit surface perpendicular to
the flow direction. £, is the mole density mole/m* of
the phase, and the product i &, is the mole velocity
in mole/(s m?). This is the number of moles flowing
through the unit surface. Multiplying by the mole
fracture x,, and the mole weight M, kg/mole one gets
the mass velocity kg/(s m?) of component k. On the
surface of the control volume, the mass velocity can
be split into two components: one parallel to the
surface, the other orthogonal on it. We obtain the
orthogonal component by multiplying the velocity
with the normal unit vector #. The expression

P
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p=

is the mass flow rate kg/s of component k through
the elementary surface d4. The summation over all
phases is necessary, because the given component can
be present in, and transported by, several phases.
The integral over the closed surface 4, is the total
mass flow rate of component k, flowing in or out from
the control volume. Because the normal vector is
oriented outwards, the integral is positive if more
mass is flowing out than flowing in.

Volume V

Num—tt

FIG. 1. Control volume around the grid point.

The second term is the source (or sink) rate. It
determines how much mass of component k directly
will be taken out of, or supplied into, the control
volume per time unit. In the case of a point source,
interpreted as a well within the volume, the volume
integral can be replaced by the value Q,;. The left-hand
side of Eq. 1 is also the mass exchange rate between the
control volume and the outside world. The right-hand
side of Eq 1 is the accumulation term. The volume of
phase p per unit rock volume is $S,m> It contains
$S, £, moles and $S & x,. My mass kg of the compo-
nent k. The summation over all phases and the integral
over the whole control volume gives the mass of
component k within the control volume. The derivative
with respect to time is the mass accumulation rate for
component k in the control volume.

Eq. 1 is a mole balance. As a matter of fact, mass
and mole balances are equivalent. This will be evident
by cancelling the constant mole mass M, from both
sides of Eq. 1. In petroleum engineering, standard
volumes are often used to express material quantities.
Let of be the standard density of the pure component
k (which is a constant). Dividing both sides of Eq. 1
by g, it becomes a volume balance. Such a formula-
tion is commonly used in the so called black oil
models with three components: oil, gas and water. It is
easy to show that the integral form of the flow
equation is equivalent to the commonly used differen-
tial form. The permeability of the porous medium is
defined via the Darcy law, which we write immediate-
ly for a multiphase case:

k. - =

i, = — S fye, = —1,fve,, 3
Hp

V(Dp.—_vpp— Qpa' (4)

In general, the permeability k is a symmetrical tensor:

kll kll le
k=| ka1 kaz kaa |, (5
kai ki kas
WheE‘B kl_,l=kjf
Substituting the flow term of Eq. 1 for velocity
according to Eq. 3, and splitting up the integral into a

sum over all the surfaces connecting block I with its
neighbours J=1,... NJ, one obtains
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= Z, QIJk! (6)
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where O, the flow of component & from I to J, is

P —_
Q= —f 2 AV, (kii)dA (7
Aryp=1

Apk=§pxpk?\'p° (8)

The sequence of multiplications in the term kV®,7
can be changed, because k is a symmetrical tensor.
Eq. 1 can be written in the following form:

NJ
> QIJk+jff qdV =
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Discretization

Looking for approximative values of the solu-
tion only on a set of grid points and only for dis-
crete time-levels, the differential equations are re-
duced to a finite-dimensional system of algebraic
equations. The process is called discretization. It
involves the construction of an appropriate grid
system and the set up of proper equations, one or
more per grid point.

Consider the grid block shown in Fig. 2. The
volume of the block is Vy, x; is the gridpoint in the
centre of the block, and x; is the grid point in the J-th
neighbour block. A4;; denotes the communication
surface between blocks [ and J. In the general case,
the block is confined by curved surfaces which can be
approximated by planes.

For the flow terms (Eq. 7)

P —_—
ch:J< Z Apkv(bp(kﬁ)dA (10)
Arrp=1

— the surface A;; connecting the block I with its J-th
neighbour _

— the scalar product Ve, (kii)

— the component mobility A,

have to be approximated.

FIG. 2. A grid block,

The surfaces A4;; and the orientation of the unit
normal vectors #i;; are determined by the rules of
grid construction. Once the grid is given, area and
orientation can be computed exactly by means of
geometry.

For the approximation of the scalar product
V@, (kii), an isotropic porous medium has to consider
at first. In this case, the tensor can be replaced by a
scalar value Fk.

In the general case, all grid points forming tetra-
hedrons with intersection with the individual block
surface have to be taken into consideration (Fig.
3). However, the scalar product V®-ii can be
approximated by a more simple formula if the vector
fi is parallel to the vector hyy, ie. the surface con-
necting blocks [/ and J is orthogonal to the
straight line connecting the grid points I and J.
Therefore,

o5 = =P (1)
hy;

For the orthogonal case, flow terms are therefore
given by

P
Q=1 Z (Apk)?; Yo, — (DI);+ L (12)
p=1
where
A
T =’_” kyy (13)
1y

is the interblock transmissibility. Eq. 13 is often used
il the block surface is non orthogonal to the con-
nection line hy;. This is erroneous, because the
calculated flow rate does not converge to the true
value if 7;;—0. That means the approximation is
not consistent. In the following, grid refinement
will be proposed as a possibility to improve the
accuracy, but this only makes sense if the grid is
orthogonal.

FIG. 3. Grid element and communication surface be-
tween blocks [ and J.



14 Heinemann and Brand

In cases where a scalar permeability cannot model
the flow behaviour in a porous medium, a tensor k is
introduced. The Darcy law, Eq. 3, establishes a linear
relationship between the potential gradient V@ and
the flow velocity i. In general, this linear dependence
alters the absolute value of Vi and its direction. Flow
velocity is no longer parallel to the potential gradient.

By using finite volume technigues the flow term
V@, (ki) can be calculated in the same manner as for
the isotropic case. The only difference is that V@, is
multiplied with the vector kii instead of ki. Or-for
general grids, the grid-block must be constructed so
that the communication surfaces are If-clrthogonal
(orthogonal in a general sense, defined by ki parallel
to /) on the straight lines connecting adjacent blocks.
In analogy to the derivation of Eq. 12,

O, — @,

V- (ki) =| k7| 7
i

(14)

Fig. 4 shows how an orthogonal Cartesian block
system is altered by the concept of k-orthogonality. In
this example,

- (3 1 e
T\l 3) (13)

the principal axes are oriented diagonally. Note that
for this reason, the surfaces connecting the block to
its diagonal neighbours are orthogonal (in the usual
sense) to the connecting line.

T
A A

//
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J

FIG. 4. E—orthogonal block system.

The Component Mobility

Since Q. given by Eq. 7 is a surface integral, the
component mobility A, is required on 4, which lies
somewhere between grid points [ and J. However, the
state variables are assigned to the grid points. To get
approximate values for A, some sort of averaging
between the values at points I and J is necessary. It
can be demonstrated that midpoint weighting has
lower truncation error, but both Peaceman [3] and
Russel and Wheeler [4] point out that midpoint

weighting may lead to oscillations and overshoot in
the solution upstream of the front. The easiest is to
take the value for the upstream grid point, leading to
the industry standard up-stream weighting. The up-
stream weighting is stable when variables are taken at
the current time level (implicit mobility) and condi-
tionally stable when calculated at the old time level
(explicit mobility). However, upstream weighting does
have a serious price related to its higher truncation
error, smearing out the sharpness of the front. Ewing
[5] discusses some of the disasterous effects of up-
stream weighting. Many proposals have been made
to reduce this numerical dispersion, including the use
of dynamic weighting, but only one possibility is
practical namely reducing the distance between the
grid points and increasing the number of blocks
between injection and production wells.

Perry and Herron [6] and Snyder [7] showed that
by immiscible gas displacement under practical con-
ditions, the saturation distribution is wrong for 3
blocks on the head of the displacement front (Fig. 5).
This smearing out effect leads to early breakthrough
and overestimate of the overall GOR, but has no
significant effect on the cummulative oil production.
With most EOR displacement, the composition
through determination of the existing phases and
their properties as viscosity, interfacial tension etc.,
plays a decisive role, The numerical dispersion smears
out not only the saturation profile, but also the
composition one. As a consequence, in a given point
{or block) between the injection and production wells,
the concentration required for miscibility will be
achieved later in a numerical simulation as in reality.

A pood example for this error was published by
Coats [8]. The length of the linear model reservoir was
60 m. The reservoir oil composed of methane, butane
and decane (20/20/60 mole %) was displaced by a
methane and butane mixture (68.4/31.6 mole %), The
numerical simulation was performed using 80, 40 and
20 grid blocks. The block lengths were 1, 2 and 4 m.

B80.0

64.0

48.0 N\
32.0 e wend

16.0
B \'\

E e

GAS SATURATION [ %]

0.0
0.0 280.0 560.0 B40.0 1120.0 1400.0

DISTANCE, [ ft1
analyfical solutlon

==« B0 blocks
= = = 15 blacks

} num. solutlons

FIG. 5. Numerical solution of a linear gas displacement
with different block sizes [7].
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FIG. 6. Calculated gas saturation vs. distance for multi-
contact miscible gas drive [8].

Fig. 6 shows the calculated gas saturation profiles vs.
distance at 210 days. The discontinuities show the
position of the miscible front. It is clear, that a correct
calculation of the displacement process requires a
block width in magnitude of 1m.

Similar results were published by Nghiem and Li
[9]. In a low temperature CO, flooding, 0.3 m block
size gives satisfactory matching for slim-tube dis-
placement. The reduction of size to 0.15 m showed no
significant changes.

Accurmnulation Term

In the accumulation term of Eq. 1,

a P
JJJV a|:¢ gi Spépxpk:IdV: (]6)

we replace the time derivative by a difference ap-
proximation. The volume integral is evaluated ap-
proximately as the value of the integrand at point I,
times the block volume. This results in

(L2 sl

z%([‘b Z Spépxpk]: _|:¢ Z Spépxpkj|:> (17)

where V; denotes the volume of gridblock I, n is the
index for the time level, t"*! =" 4+ At. In the discretiz-
ation for this term and also for the source term, an
irregular shape of the gridblock has no influence as
long as the block volume is evaluated correctly.

The accumulation term for the energy balance
equation has a similar form. By simulation of in situ
combustion this term plays a critical role. The high
temperature burning zone has an extension of 0.3 to
I m. If the block size is larger than this, the average

temperature of the block will be lower than the reac-
tion temperature. Consequently, the burning front
extinguishes. Chu [10] showed that the grid block
size would have to be in the order of half-a-meter.

BLOCK SIZE IN NUMERICAL SIMULATION
OF EOR PROCESSES

In black oil simulation, the areal block size can be in
the magnitude of 100 m by water drive and can be
extended to 1000 m by depletion drive. That means
2000-10,000 blocks per layer in the case of an average
oil reservoir. Taking 3-10 layers vertically means
6000-100,000 blocks in a conventional Cartesian grid.
The upper limit is nowadays the maximum which can
be handled with the largest and fastest computers.

Reducing the block size to 10m, the number of
blocks explodes to 0.5 to 10 million and 10 m is still to
large for some important EOR displacement processes.
This is the reason that most of simulation studies were
limited to symmetry elements of pilot areas.

Theoretically there are two possibilities to over-
come this difficulty:

— local grid refinement, and

— front trucking.

Local grid refinement is an extension of the generally
used finite difference technique. In front trucking, the
steady-state pressure distribution is caiculated for fixed
saturation and composition distribution. This deter-
mines the velocity of the displacing fronts and it is
possible, taken into consideration the overall material
balances, to determine their new position a time step
later. Recent publications [11] presented results for
two phase immiscible displacement. Future investiga-
tions have to show the applicability for more realistic
cases. In this paper, only local grid refinement will be
discussed, already applied in commercial simulators.

Local Grid Refinement

A simple Cartesian grid, also when using variable
grid spacing, is frequently not sufficient for supplying
a good description of particularly interesting areas,
e.g. in the vicinity of the displacing front.

In order to achieve a high resolution by means of as
few blocks as possible, selected area or individual
blocks can be subdivided by means grid refinement.
This method was used for reservoir simulation by Von
Rosenberg [ 12] and Heinemann et al. [13—15] at first.

The initial block system is called fundamental and its
blocks are referred to as fundamental blocks (Abbrevi-
ate: F-blocks). They are defined by three indices I'1, 12,
I3 for the 3D-space. Three divisor numbers (K71, K12,
K1I3)are assigned to every F-block. They indicate the
number of partial blocks into which the F-block is to
be subdivided in the corresponding direction. In this
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way, sub-coordinates (11T, I2T, I3T) are defined in

every F-block, having the same direction as the main

coordinates (Fig. 7).

In this way each partial block can be addressed by
specifying the coordinates (f1, 12, I3). Partial blocks
are referred to as R-blocks (refinement) in the follow-
ing.

For a correct calculation of the transmissibility it is
necessary to modify the block boundaries on the
transition surface of the coarse and refined grid. Fig.
8 shows a correct refinement.

The communication surface between F- and R-
blocks is orthogonal on the grid line IJ and so, as
shown previously the difference approximation will
be consistent.

It is easy to understand that this solution has some
limitations. It is applicable only if the refinement is
1:2 (Fig. 9) for each direction. The second problem is
if there is a refinement on both sides of a grid block,
one gets complications in the calculation of the trans-
missibilities. For blocks with stretched shape it is not
possible to construct such a geometry. The last prob-
lem rises when regarding the vertical directions. In
consequence the following rules have to be consider-
ed for subdivision of fundamental blocks:

1. If the neighbouring F-blocks of an F-block in one
coordinate direction are looked at, the divisors for
the two other coordinate directions are not allowed
to increase for both of the neighbouring F-blocks.

FIG. 8 Distortion of block interfaces in a three-dimen-
sional grid. The fundamental block (left) has a neighbouring
block divided into four subblocks.

r—- MEGATIVE BLOCK BREADTH

b b e
} +
l'/'
a
\\
N i
1

FIG. 9. No orthogonal refinement possible by stretched
blocks.

2. At any section through the block system, one
block may only have one or two neighbouring
blocks on each side.

3. The division in the vertical direction must be
continuous within communicating layers, i.e. the
divisor for the directions I2 and I3 are the same
for neighbouring F-blocks lying one below the
other.

4. If two F-blocks in one coordinate direction are
looked at, it is not allowed that one of the divisors
of the two other coordinate directions increases
and the other decreases.

In a conventional Cartesian block system using a
five-point differential scheme, a block has a maximum
of four neighbours in the two-dimensional case, and a
maximum of six neighbours in the three-dimensional
case.

For a local grid refinement, a block can have a
maximum of twelve neighbours, taking into consider-
ation rules 1-4.

True and Patch Refinement

Two different type of local grid refinements have
been applied in reservoir simulation:
— True refinement
— Patch refinement

The first technique is a true local grid refinement
where an arbitrary level of refinement can be applied
at any region or point of space. With true refinement,
all grid points are integrated into the same equation
system. A conventional Cartesian grid with natural
ordering (follow the coordinate axis) leads to a linear
algebraic equation system with regular band matrix
with uniform bandwidth. The solution algorithm
for these types of equations is well known and a
good vectorisable. Local grid refinement disturbs
this regularity and needs special matrix solvers.
They cannot be so fast because the position of the
non zero coefficients are not known a priori. This
type of refinement cannot be adapted to conventional
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simulators because a different algorithm and code
structure are required. It was mentioned [16], that
the overhead associated with the data structures and
the grid generation can dominate the overall compu-
tation time. This statement does not fit with the
experiences of the author. Developping new matrix
solvers, special for irregular linear equation systems,
can reduce the overhead considerably [17].

The performances are the same as for the conven-
tional block model with the same grid size. Experien-
ces have shown that the true refinement is general
applicable and has no limitation in respect to flow
direction, saturation, distribution etc. In this paper all
discussion are related to truly refinement.

By patch refinement the equations are solved on
the coarse grid at first. This coarse grid overlap the
refined area. Afterwards, some of the grid points serve
as boundary points to solve a second system of
equations for the refining grid points. The advantage
of this type of refinement is that the matrix remains
regular and can be solved faster. The decoupling of
the refined part of the grid leads to serious instabili-
ties and cannot be used if the flow is directed from the
refined grid towards the coarse one. In this case the
upstream block is refined and has different satura-
tions and overall composition as the corresponding
coarse block. If any, then the patch refinement can be
used but only if the transition surface between the
coarse and fine grid is far enough from the place of
interest.

Gathering

Applying grid refinement one can get a higher
resolution in the vicinity of the wells, boundaries and
discontinuities. Practical applications have shown
that the reverse procedure, i.e. constructing a block
system by block gathering, may be very useful. This
technique was introduced by Heinemann and Munka
[18].

Fig. 10 shows one part of a fundamental Cartesian
grid. Once 8 blocks and twice 2 blocks where
gathered. The same block system can be constructed
through refinement. In Fig. 10 one block was sub-

Reflnement

Gothaing

FIG. 10. Construction of a block system by block gather-
ing and refinement.

divided 4 times and two blocks twice. A gathered
block system is consistent under the same conditions
as the refined block system. The rules of that are
given in the previous section.

Primary and Secondary Grid

The reservoir is known through the structure map,
gross and net thickness, porosity distributions etc.
We apply a block system which approximates more
or less the geometry. We assign parameters to the
blocks which are average values for that part of
reservoir represented through the block volume. The
average pressure and saturations will be calculated
for each block under consideration of the phase
contact, the PV T and rock properties. In this way the
block system is initialized. The average reservoir
pressure and the petroleum in place can be compared
with the forgoing volumetric reserve estimation. If the
initialization is right, the model will be in hydro-
dynamic equilibrium. The grid model is called
primary grid.

We can change the block system through subdivi-
sion of the blocks or through gathering. The combina-
tion of these, that means construction of new blocks
from subdivided ones, can be used, even when it is a
little bit complicated. Such a rebuilding of the block
system has to conserve the mass. That means no
change in the amount of fluid in place is allowed. The
parameters of the blocks have to be calculated from the
previous block system and not from the maps. The new
system is called secondary block system.

Our expectation is that if the primary grid was in a
hydrodynamical equilibrium the secondary has to be
near this stage.

Dynamic Grid Refinement
Refinement and gathering can be done in every
stage of the simulation run. The only problem is to

assign the right pressure, saturations and composi-
tions to the new blocks. Fig. 11 shows a linear

10 DISPLACEMENT FLUID SATURATION

0.5

SATURATION

- R-BLOCKS alock
GATHERED REFINED

FIG. 11. Linear displacement with dynamic grid refine-
ment.
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displacement with pressure and saturation distribu-
tion. Ahead of the displacement front the saturation
is homogeneous. If the coarse grid is refined here
before the displacement front arrives, the same satu-
ration to all refined block, equal to can be assigned
themselves of the coarse grid. The pressure is not
critical because it is calculated implicity in the next
time step and the assigned values have no influence
on that.

Behind the front saturation (and composition)
gradient is moderate. Blocks can be gathered and the
volume average values can be assigned to the new
ones. The automatic and continuous application of
this procedure leads to the moving grid. The grid is
refined only on the displacing front and moves with
it.

The refinement and gathering of the blocks is
regulated by two sets of parameters:

— Maximal pressure, saturation and concentration
gradients before a fundamental block

—~ Maximal pressure, saturation and concentration
between refined blocks within a fundamental block,

After every time step it will be shown if at least one
of the gradients is higher than the limit. If this is the
case, the downstream block will be refined for the
according coordinate direction. Afterwards, it will be
proved if the rules of refinement are satisfied or not
and supplementary refinement done if necessary in
the surrounding blocks. It is assured that the dis-
placement front is always placed in the refined area.
The second condition will be proved only in given
time points to avoid a continuous jump between
refinement and gathering.

Dynamic grid refinement brings a certain overhead
in the numerical calculation, but this is not very
much. This will be demonstrated by a simple example
which is well documented by Odeh [19]. Areal and
cross-section views of the reservoir are given in Fig.
12. The reservoir is initially undersaturated. A gas
injection well is located at the grid point (1,1,1) and a
producing well at (3,10,10). Pertinent data, PVT
properties and relative permeabilities can be taken
from the original Odeh paper.

QA3 IHIECTHIN WELL

A 3x5x5 grid was taken with 2 x 2 refined blocks
at the well location. The number of blocks are 93
compared with the 300 blocks in the original
3 x 10 x 10 grid. The same data and constraints were
used as in the original example (Case A).

For every block a 2 x 2 horizontal dynamic refine-
ment was allowed. A block would be refined if the
difference between two neighbouring blocks exeeds in
saturation 0.05 or in pressure 20 bars. For case B the
block gathering, that means the reconstruction of the
original blocks, was not allowed. In case C this
happens if the maximal saturation and pressure dif-
ferences between the refined blocks within a funda-
mental one become less then 0.05 and 10 bars.

Fig. 13 shows number of blocks vs. production
time. Fig. 14 gives the block systems of cases B and C
at gas breakthrough. The results were in every respect
practically identical and as good as for the basic case.
Fig. 15 compares the CPU-times and gives an impres-
sion of the advantages of dynamic grid refinement.

To evaluate the computational efficiency of local
refinement the 10 years producing period with time
step 90 days is simulated. The simulation was run on
the DEC Microvax-IT computer. For both cases the
finite difference equations are solved respectively by
IMPES, semiimplicit, and fully implicit (Newton-
Raphson Iteration) solution methods. The matrix is
solved by an iterative solver. The production results

Number of Blocks

Year
FIG. 13. SPE First Comparative Solution Project.
Number of blocks vs. production time.

GAS INJECTION OIL PRODUCTION

100 MM SCF/D WELL
¢ HFT Ky K 5 5 s
. 1. X Y {LINK} *w o 8325 FI.
tavent | [ .3 | 20 800|800 .12 |88 ¢ 8335 FT.
3 50
LAYER 2 a |20 so0 | Bo .12 | .88 4 8360 FT.
26 |
LAYER 3 a | Bo 200|200 .12 a8 | 3 4 saco 1.
¥
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I
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I=4=1 2 3 4 6 6 T 8 9 10

FIG. 12. SPE First Comparative Solution Project. Grid system and diagonal cross section [19].
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FIG. 14. SPE First Comparative Solution Project. The blocksystem at gas breakthrough for cases B and C.
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FIG. 15. SPE First Comparative Solution Project. Com-
parison the CPU time for dynamic refinement.

in both cases were in good agreement for all three
solution methods.

The CPU time per matrix-solution and per vari-
able of case B is larger than that of case A. This is
caused by the irregular matrix structure of case B, but
is compensated by the reduction of block number. In
the average, 23% reduction of block number could
save 10% of CPU time.

EXAMPLE

To transmit the idea of combined application of
dynamic grid refinement and gathering by EOR simu-
lation studies, an example will be presented.

The fundamental block system has an extension
of 5x30x40=6000 blocks. The block size in the
productive area is 100x 100m. Rich HC gas is
injected on the top of the relatively flat anticlinal
in one well with 300.000sm?*/d rate. The area of
interest was refined 2 x 2 to get 50 x 50 m block size
and outside the blocks are gathered to save CPU-
time. The block model is shown in Fig. 16. Note that
in the area which will not be touched by miscible
drive, the blocks are gathered vertically as well,
leading to a two dimensional model for this part
of the reservoir. The surrounding of the EOR area is
described just coarsly, but still the whole hydro-
dynamic unit is included in the calculations. This
refined/gathered model has 3660 blocks. The con-
ventional model with the same block size in the
central area, shown in Fig. 17, would have 8640
blocks.
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FIG. 16. Field scale miscible gas drive. Refined and
gathered grid.
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FIG. 17. Field scale miscible gas drive. The conventional
Cartesian grid.

A 4 x4 dynamic grid refinement was used on the
edge of the miscible front. A 50 x 50 m block was
refined if the gas saturation difference between the
two upstream partial blocks (in the already 4 x4
refined 50 x 50 m block), exceeded 0.2. The dynamic
refined blocks were gathered if in the initially
50 x 50 m block the maximum saturation difference
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between any partial blocks became less than 0.05. Fig.
18 shows the resulting block system after 3 years of
injection. The actual block number is at this time
6640. A static conventional grid with the same block
size in the EOR area requires 49,608 blocks already
beyond the technical limit of compositional simula-
tion. In Fig. 19 only the refined area is plotted
showing more detail of it.
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FIG. 18. Field scale miscible gas drive dynamic grid

refinement after 3 years production.
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FIG. 19. Field scale miscible gas drive. Dynamic grid

refinement after 3 years production focused on the EOR

area.

CONCLUSIONS

1. Numerical simulation of EOR processes based on
finite difference methods requires small block size.
Depending on the displacement process the range
is somewhere between 0.5 and 10 m. In full scale
simulation, this is not applicable with conven-
tional gridding for such a model would have some
millions of grid blocks.

2. The grid must be orthogonal to make sure that
the numerical solution converges to the true one if
the grid size diminishes. By applying some simple
rules, local grid refinement satisfies this require-
ment even at the fine-coarse grid transition zone
for a Cartesian grid.

3. True refinement is robust and generally appli-
cable, but requires new numerical algorithm and
computer codes. Batch refinement can be adapted
to conventional simulators, but its applicability is
limited.

4. Small block size is only required at the displacing
front. A dynamic grid refinement makes it possible
to divide the downstream blocks ahead of the
front and gather them in the upstream area.

5. The block gathering technique can be used out-
side the EOR area, reducing the block model to a
two dimensional one. In this way, the influence of
the environment (aquifer, other producing areas)
is taken into account without wasting computing
time for uninteresting detail.

6. Combining block gathering and dynamic grid
refinement techniques an EOR displacement can
be simulated with some meter block size on the
front without exceeding the technical and econ-
omic limits.

NOMENCLATURE

A surface of control volume in balance equa-

tion

A;; surface common to grid blocks I and J

g gravity acceleration

h grid spacing

K number of all components

k permeability tensor

ky; component of the permeability tensor

kerp relative permeability for phase p

M, mole mass of component k

NJ number of neighbours communicating with

gridblock J

i unity normal vector on surface 4

P number of all phases

P, capillary pressure for phase p and p’

Pr phase pressure

0y flow terms defined in Eq. 7

Sy phase saturation

t time

i, u, filtration velocity of phase p

V volume

Xpk mole fraction, component k, phase p

Greek letters

Apk [

Ap phase mobility

E, specific mole density of phase p
Pp phase density
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Ty interblock transmissibility
[0 porosity
Subscripts
p phase
k component
rp relative permeability for phase p
I,J gridblocks
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