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SIMPLE MODEL TO PREDICT THE DELIVERABILITY OF VOLUMETRIC GAS

RESERVOIRS

M.A Benrewin*

dazd! & W y\ﬂ\ Y Cl:u'?\ ey Clud Ja ‘.-.9"""') C.:ﬁ

o) ot el gy )

)Wigigg_cuyuwaua,,bci Fraed] 2561 S e Y Sl s i) oS8 Jan (3b) pisf b ¢
2y Jall ada plasia] 0BGy W1 debs f ade e pa b (g Gy Hginy Lls] el SIS o3 o e S 3 s
L3 el e A Al 3l Jan sl A Ol Lo SW) dyi gl Ll Sl 3 sl i

ABSTRACT

There are many ways to predict the deliverability of
gas reservoirs ranging from a simple material balance
equation to very complicated gas models.

A simple mathematical model was developed in this
study which can be used to predict the deliverability of
volumetric gas reservoirs under different production
scenarios. The model was tested with real data and
proved to be reasonable for initiating any development
plan for volumetric gas reservoirs. Some limiting assump-
tions were imposed on the model and must be considered
when using it.

INTRODUCTION

Predicting deliverability from a gas reservoir is an
essential element in deciding whether or not it can be
developed economically. An optimum development
plan depends on the specific characteristics of the
reservoir and the market conditions.

If a gas reservoir is to be produced against a constant
back pressure of a pipeline, it is important to know if
contract rates can be met, and for what time period.
When contract rates are predicted to be in deficit,
remedial alternatives must be investigated to sustain
the required rate.

There are many ways to predict the deliverability of
gas reservoirs ranging from a simple material balance
equation to very complicated compositional model. In
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this paper a mathematical model was developed to
predict the deliverability of a volumetric gas reservoir,
for different producing scenarios, to meet and maintain
desired contract demand rates.

MODEL FORMULATION

Consider the situation when a pipeline company
prepares a contract for purchase of gas from a gas
reservoir. The contract may include a variable demand
rate schedule and may also require that the gas be
delivered at a specific delivery pressure.

If that gas reservoir is to be produced apainst
a constant back pressure of a pipeline, the production
performance will consist of an initial period of a con-
stant rate followed by a decline. To control the decline
and maintain the deliverability, it will be necessary to:

1. reduce the delivery pressure,

2. reduce the tubing head pressure and install gas
compressor, or

3. drill more wells.

The reservoir development problem becomes one of
providing sufficient well deliverability capacity to meet
the target rates. Then, facilities need to be constructed
to transport gas from the well head to the pipeline, at
the specified delivery pressure. The production must
pass through separators, dehydrators, meter runs and
flow lines to the pipeline. Some pressure drop is
associated with each of these equipment parts.
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There should be a relationship between the delivery
conditions (rates and delivery pressure) and the ability
of the reservoir to meet those conditions. The relation
can be formulated by integrating the reservoir, well-
bore and flow facilities by specifying the delivery
conditions (rates and delivery pressures) at the pipeline;
pressure losses in the surface facilities and wellbore can
be calculated to provide the correct pressure drop
between the reservoir and the wellbore. From this
pressure drop the deliverability of the wells and the
reservoir can be determined.

This study was concerned with the development of
volumetric gas reservoir near a large pipeline. Some
assumptions are to be considered to simplify the formu-
lation of the model.

1. A volumetric dry gas reservoir under natural
depletion, no water influx, and no water or
hydrocarbon liguid production. There is no need
for gas separators, dehydrators.

2. All producing wells are a short distance from the
transmission line so the pressure drop in the
gathering line is negligible.

3. The largest pressure drop was assumed to occur
between the gathering stations and the farthest
well. Accordingly, any well can be assumed to
behave as the farthest well.

Fig. 1 shows a schematic drawing of the proposed
network to be modelled. The surface facilities in the
field consist of a transmission line between the well and
the delivery point at the pipeline.

By specifying the delivery pressure and the daily
required rate, the well head pressure can be computed
by calculating the pressure drop along the transmis-
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FIG. 1. Model Layout.

sion line using Weymouth’s equation for horizontal
flowlines [17:
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The same equation can be used in a situation where
a gas compressor is installed on the transmission line.
The output pressure of the compressor can be calcul-
ated by computing the pressure drop between the
delivery point and the gas compressor station. The
brake horse-power of the compressor can be calculated
by assuming different suction pressures and using the
following equation:

K—1

—W=L-T-C((P°“‘)Z(T)—l)-E 2)

K-1 P;,

Where E is the efficiency of the compression.

Also, the well head pressure can be calculated by
computing the pressure drop between the suction
pressure of the gas compressor and the well head.

The well head pressure influences the bottom hole
flowing pressure of a well. Low well head pressure
increases the rate of flow due to the low back pressure
on the reservoir. The bottom hole flowing pressure can
be computed using the Cullender and Smith equation
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The Cullender and Smith equation can be evaluated
numerically in a two-step calculation. Simpson’s rule
may be used to perform the integration:

L 2
?5’;_—34 =3 (ITf 4 4IMSf+IWF) (P — Py) (6)

The back pressure behaviour of a gas well is usually
related to the daily rate of delivery of the gas and the
pressure drop within the reservoir. Rawlins and
Schelhardt [3] presented an empirical equation which
relates the flow rate and the pressure difference between
the bottom hole pressure and the reservoir pressure as
follows:

Q=c(Py, —P5y)° (7

e 9%

The factors “c” and “n” are considered to be constant
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throughout the life of the well. By knowing the average
values of ¢, n, from testing number of wells, and bottom
hole flowing pressure, the static reservoir pressure can
be calculated.

For natural gas reservoirs, under volumetric control
the cumulative gas produced at any reservoir pressure
is the difference between the volumetric estimates of
gas-in-place at the initial and subsequent pressure
conditions. This relation is known as the Material
Balance equation, which can be expressed as:

P, P
Gp=C GI(‘Z—‘—'z) (8)

Accordingly, knowing the initial gas in place (GI)
and the subsequent reservoir condition, the cumulative
gas production can be determined.

Also, the production time can be easily calculated as
a result of dividing GP by total daily contract rate.

Calculation Procedures and Model Description

Based on the above discussion, the calculation
procedures can be summarized as follows:

1. Knowing the delivery conditions (contract rate
and delivery pressure), the pressure drop along
the transmission line and the well head flowing
pressure can be computed using Weymouth
equation.

2. Knowing the well head flowing pressure, the
bottom hole flowing pressure can be computed
using Cullender and Smith method.

3. The calculated bottom hole flowing pressure is
then used with the back pressure equation to
calculate the static reservoir pressure.

4. Knowing the initial reservoir pressure and the
current static reservoir pressure the deliverability

of the reservoir can be computed from the
material balance equation.

The above procedures require trial and error calcula-
tions which are best carried out on a computer.

A computer program was developed to carry out the
calculations.

It is composed of a main program and nine subrout-
ines. The subroutines are listed below, along with their
main functions.

GASMODE: Carries all the calculations for the
model.

GASPRO:  Calculates the gas properties such as
gravity, molecular weight, etc.

ZSTAR: Calculates the gas compressibility fac-
tor [4].

VISC: Calculates gas viscosity.

FRICT: Calculates friction factor.

FBHP: Calculates bottom hole flowing pressure
using Cullender and Smith equation.

PREDR: Calculates pressure drop along any
horizontal flow line using Weymouth’s
equation.

GPP. Calculates gas production and static
reservoir pressure using the back pres-
sure and material balance equation.

COMPHP: Calculates the brake horsepower for the

gas COmpressors.

MODEL STUDIES

The developed computer model was used to predict
the performance of the carbon gas field [5]. The data
used to run the model are listed in Table 1 and 2. The
following four production scenarios were studied:

1, Base Case: Natural depletion until the contract
rate can no longer be met.

Table 1. Carbon reservoir - Well effluent

Well: CWNG Carbon 10-19-29-22

Date of Sampling: January 26, 1968
Januvary 29, 1968

Date of Report:

All measurements at 14.65 psia and 60°F

Pressure of the sample: 1002 psig

: Temperature o the sample: 68°F

Componeit Well Effluent
0, 0.003
H, 1.912

CO, 0.219
C, 85.518
C, 6.462
C; 3311

iCy 0.797

nC, 0.451

iCs 0.302

UCS 0.225
Cs 0.685
or 0.115

100.000

Properties of C;
Density =0.7471 gms/cc
API Gravity=57.9
Molecular Weight=119.0
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2. Scheme I: Same as the base case except the
delivery pressure was continually reduced to
maintain the contract rate, after the point in the
base case where deliverability declined.

3. Scheme II: Same as the base except the compres-
sor was installed to maintain the rate.

4. Scheme III: Same as the base case except infill
drilling was initiated to maintain the rate.

Table 2. Carbon reservoir — Average reservoir properties

Initial Reservoir Pressure, psia 1462
Reservoir Temperature, °F 115
Porosity, percent 19.4
Permeability, millidarcies 196.3
Water Saturation, percent 29.5
Bulk Volume, acre-feet 325,873
Initial Gas-In-Place, billion scf 2197
Reserves per Acre-Foot, million scf/acre-ft. 674.2
Average Absolute Open Flow, million scf/d 26.03
Average Exponent, “n” 0.887
Average Performance Coefficient, “C” 256.81

The above schemes were studied under different flow
rates ranging from 20.3 to 29.3 MMSCFD. Some of the
results obtained by the model are shown in Table 3 and
Figs. 2,3 and 4. Base Case-natural depletion against
a delivery pressure of 950 psia until the demand rate of
29.3 MMSCFD could no longer be met, recovered 58
billion SCF of gas in 5.4 years. This is 26 percent of the
initial gas in place.

Scheme I: Implementing a strategy of lowering the
delivery pressure to maintain the demand rate after 5.4
years, recovered an incremental 37 percent of the initial
gas in place, for a total recovery of 63% at a delivery
pressure of 250 psia.

Scheme II: Utilizing gas compression to maintain
the demand rate after 5.4 years, recovered an incre-
mental 43 percent of the initial gas in place, for a total
recovery of 69 percent at a suction pressure of 100 psia.

Scheme III: Adapting a strategy of infill drilling
after 5.4 years, had minimal incremental recovery
about 1% and was not considered a feasible develop-
ment alternative.

The model can also be used to study the effect of
tubing size on the gas recovery as shown in Figs. 5, 6, 7.
The results show that using large tubing size yields
more recovery due to low pressure losses in this
tubing.

The results obtained by the model for the carbon gas
field were consistent with the common figures for the
kind of gas reservoir.

As a general result, the model can be used to predict
the deliverability of any volumetric gas reservoir under
different production scenarios. The assumptions which
imposed on the model should be considered.
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CONCLUSIONS AND RECOMMENDATIONS

Based on the work carried out in this study, the
following conclusions were made.

1.

A simple mathematical model has been devel-
oped which predicts the deliverability of any
volumetric gas reservoir.

. The model can be used to predict the deliverabil-

ity of volumetric gas reservoirs under different
production scenarios.

. The model results are very reasonable to be used

for initiating development plans.
The assumptions imposed on the model should
be considered when using the model.

. The model can be used to investigate many

variables such as flow rates, tubing sizes, pipe line
sizes, etc.

. This model can serve as an important planning

tool for proper development and management of
a volumetric gas reservoir.
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NOMENCLATURE

Flow rate or production rate (MMSCF/d)
Gas compressibility factor

diameter (inch)

length (miles)

friction factor

specific heat capacity ratio

Temperature (°F)

Eficiency of the compression

Gas produced (BSCF)

Theoretical Horse power per MMSCF
Gas gravity

Pressure (psia)

Pressure standard condition (psia)
Pressure, reservoir at static condition (psia)
Pressure, bottom hole flowing (psia)
Pressure, Tubing flowing (psia)

Initial Pressure (psia)

Inlet Pressure (psia)

Outlet Pressure (psia)
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