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Abstract: The average reservoir pressure is an important parameter in petroleum engineering which is 
utilized in almost all reservoir and production engineering calculations. Normally, the average reservoir 
pressure is obtained from build-up test and can be measured only when the well is shut in. Besides that, it 
requires an update from time to time. It also has a great economic impact caused by shutting in the well during 
the entire test. However, the objective of this study is to establish a neural network model that can map certain 
relationship that controls previous production performance of the reservoir to predict current average reservoir 
pressure without shutting in the wells.  
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INTRODUCTION

STraditionally, the average reservoir pressure is 
obtained from build-up test when the well is shut 
in by measuring the long-term build-up pressure. 
The build-up pressure eventually builds up to the 
average reservoir pressure over a long enough 
period of time. This time period depends mainly on 
the reservoir permeability. It may take long in low 
permeability reservoirs. Because reservoir pressure 
changes as fluids are produced from a reservoir, the 
average reservoir pressure should be updated from 
time to time. In addition, it has a great economic 
impact caused by shutting in the wells during the 
entire test. 

The current state-of-the-art in production 
average reservoir pressure, specifically in cases of 
application of artificial intelligent techniques, is 
quite limited. In this work we established a neural 
network model that can map certain relationship 
that control previous oil, gas and water production 
performance of the reservoir to predict current 
average reservoir pressure without needing to close 
the wells. This method is suitable for both constant 
and variable flow rates. After obtaining the average 
reservoir pressure, it can be utilized in almost all 
reservoir and production engineering studies. Some 
of these studies include computing rock and fluid 
characteristics, estimating hydrocarbons in place, 
establishing the value of water influx, and predicting 

future reservoir behaviour in primary/secondary 
recovery and pressure maintenance projects. 

Artificial neural networks (ANNs): ANNs are 
relatively new computation tools that have found 
extensive utilization in solving many complex 
engineering problems. A basic network shown in 
Fig. 1 has three layers of processors: an input layer, 
an output layer, and a one hidden layer in between. 
Each layer has a number of neurons or nods. 

At first, both input data and corresponding 
desired output data are given to the network. As 
the network starts training, the input layer receives 
the input signals, and then starts processing the 
data through the hidden layers until reaching the 
output layer yielding the resulted outputs. These 
outputs are then compared with the desired outputs 
computing the error, which is back propagated 
through the system causing it to adjust the weights, 
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Fig. 1. A generalized artificial neural network. It has an input 
layer with four neurons, one hidden layer with five neurons and 
an output layer with one neuron.
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which control the network. Once a neural network 
is trained to satisfactory level, it may be then used 
as an analytical tool on other data. 

The feedforward error-backpropagation is the 
most famous procedure for training ANNs. It is 
based on searching an error as a function of ANNs 
weights. Each iteration in the backpropagation 
constitutes two sweeps: forward activation to 
produce a solution and a backward propagation of 
the computed error to modify the weights (Basheer 
and Hajmeer 2000). 

Modeling with neural networks is not an easy 
task. This poses considerable challenges for 
engineers particularly in terms of the requirement 
to realize sufficient robust models. The major 
challenges could be summarised as following: 

Choosing the model structure: Once the 
number of input and output nods is defined by the 
problem, the number of hidden layers and nodes 
in each layer is far from clear. Therefore, the first 
decision we will need to make is: how many hidden 
layers and how many nodes in each hidden layer? 
In most situations, there is no way to determine 
the best number of hidden units without training 
several networks and estimating the generalization 
error of each. If we have too few hidden units, we 
will get high training error and high generalization 
error due to under-fitting and high statistical bias. 
If we have too many hidden units, we may get low 
training error but still have high generalization 
error due to over-fitting and high variance (Geman, 
et al 1992).

Selecting Training Algorithm: After the number 
of hidden layers and number of nods in each layer 
has been selected, the next step is selecting the 
training algorithm. The objective of the training 
algorithm is to determine the global minimum of the 
error surface. In this process, the network weights 
must be set so as to minimize the prediction error 
made by the model. This is the role of the training 
algorithms. The historical cases (inputs and outputs) 
are used to automatically adjust the weights in order 
to minimize this error. This process is equivalent 
to fitting the model represented by the network to 
the training data available. The error of a particular 
configuration of the network can be determined by 
running all the training cases through the network, 
comparing the actual output generated with the 
target outputs. The differences are combined 
together by an error function to give the network 

error. The most common error functions (cost 
functions) are the sum squares error, where the 
individual errors of the output units on each case 
are squared and summed together. Despite the wide 
range of learning algorithms being available to 
train the ANNs model, there is no single learning 
algorithm that works best on all learning problems. 
In fact, the choosing of training algorithm is based 
on the characteristics of the problem; consequently, 
training a neural network model essentially means 
selecting one model from the set of allowed models 
that minimizes the cost function.

Activation function: The specific activation 
function (also known as a transfer function) used at 
the active nodes of the feedforward ANNs is fixed 
before the model is trained. Activation functions are 
needed to introduce nonlinearity into the network. 
Without nonlinearity, hidden units would not make 
nets more powerful than just plain perceptions. In 
other words, the neural networks pass the output 
of their layers through activation functions. These 
activation functions scale the output of the neural 
network into proper ranges. There are many 
activation functions that we can choose from and 
each one has its own special virtues. We may notice 
that, it would be possible to use a different activation 
function for each layer of the neural network. As 
a result, we have to choose an activation function 
suited to the distribution of input and output values. 
For more details of various activation functions see 
Bulsari (1995).

Ultimately, the selection of the architecture of the 
neural network will come down to trial-and-error 
procedure. If the model architecture and learning 
algorithm are selected appropriately, the resulting 
ANNs can be extremely robust.

The proposed model: In this study, the ANNs 
model is designed to estimate the current average 
reservoir pressure without needing to close the 
wells. The network is supervised, feedforward with 
backpropagation. After trying several models, the 
[4-5-1] network was found to be the best extremely 
robust model. The input layer received the following 
parameters; cumulative oil production (Np), gas 
flow rate (Qg), water flow rate (Qw) and number 
of wells on production. The output layer has one 
neuron which is average reservoir pressure (Pavg). 
The selected model contains one hidden layer with 
five neurons. The error function of the proposed 
model was sum-of-squares. 
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Data preparation and acquisition: A Libyan 
oil reservoir located in Sirt Basin consisting of 56 
oil wells was utilized in this study to develop a 
model to estimate the average reservoir pressure. 
The reservoir started its production in March 
1970, and a total of 49 average reservoir pressure 
data points were recorded during a 39 years of 
production (from March 1979 to May 2009). The 
range of this dataset is illustrated in Table 1. 

To build a robust model, the last two recorded 
average reservoir pressure (June 2007 and May 
2009) was put beside in order to test its prediction 
performance after it trained properly. The rest of the 
dataset (47 points) were used to build the network. 
Besides, to avoid over fitting (overtraining), it is 
necessary to use early stopping technique. In 
early stopping, the training data points are split 
randomly into three sets, training, validation and 
test sets. The validation set (6 points) is used in 
learning to decide when to stop. This illustrated 
in Fig. 2. The Figure shows a typical plot of how 
the sum-of-squares error changes with the number 
of iterations. If the validation error increases 
while the training error steadily decreases then a 
situation of over fitting may have occurred. When 
the performance with the validation test stops 
improving, the algorithm halts. After that, the test 
set (7 points) was used to evaluate how good an 
ANNs performs on data that it has not seen before. 
The ranges of the aforesaid datasets are shown in 
Table 2.

Neural network architecture: The architecture 
of the neural network used in this study is 
multilayered with 4 input nodes, one hidden layer 
with 5 nodes, and 1 output node, [4-5-1]. The 
number of hidden nodes, training algorithm and 
activation function are determined through trial-
and-error procedure.The network was trained 
using feedforward backpropagation with Quasi-
Newton training algorithm. The neurons in the 
backpropagation used hyperbolic tangent as input 
activation function and logistic activation function 
in the output. A hyperbolic tangent activation 
function gives values that range from -1 to 1. A 
logistic activation function yields an output varies 
from 0-1.

Consequently, the proposed network 
provides the best minimum error for training, 
validation and test of the network Fig. 3, 4 and 
5 respectively. It is obviously from the Figures 
that the network provides results very close to 
actual average reservoir pressure.  This indicates 
an excellent agreement between the actual and 
the calculated average reservoir pressure. The 
statistical parameters for the prediction capability 

	
  
Error of the training set  

Error of the validation set  

Fig. 2. Error as a function of training time. The red curve is the 
error on the validation set. The blue curve is the error of the 
training set. 

Table 1. Range of All Used Data

Model 
parameter Max Min Average

Pavg, psi

Np, STB

Qw, bbl/d

Qg, scf/d

No. of wells 

1188

492MM

155036

21902

56

820

492M

3572

1732

12

924

352MM

73280

7969

40

Table 2. Range of Data using in Training Process

Training Set Validation Set Test Set

Max Min Avg. Max Min Avg. Max Min Avg.

Pavg, psi

Np, STB

Qw, bpd

Qg, scf/d

Wells

1188

487MM

155036

21902

53

833

492M

3572

1732

12

933

372M

71590

8149

39

1072

387MM

114499

17832

49

841

618MM

31453

2458

15

931

378MM

667588

8976

36

1081

393MM

120272

18118

55

853

563M

22544

1748

37

906

364MM

85388

7965

43
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obtained from the network are summarized 
in Tables 3. The proposed network provides 
prediction values of average reservoir pressure 
with an average absolute error (AAE) of 18.816 
and average absolute relative error (AARE) of 
2.033% indicating that the model describes the 
data well.

To study the prediction performance of the 
proposed network, two unseen points have been 
used to evaluate its performance Fig. 6. Table 
4 summarizes the statistical error analysis. The 
analysis shows a small error indicating that the 
model is robust.

CONCLUSIONS

A neural network model was developed to predict 
current average reservoir pressure without needing 
to close the wells. The model is suitable for both 
constant and variable flow rates. The data in use 
were a set of 49 measured average reservoir pressure 
collected from a Libyan oil reservoir located in the 
Sirte Basin. The network consisted of one hidden 
layer with five neurons. The input layer received 
four parameters; cumulative oil production, water 
production rate, gas production rate and number of 
wells on production. The network was trained using 
feedforward backpropagation with Quasi-Newton 
training algorithm. 

The results reflect that the application of neural 
network models is feasible for prediction of the 
current average reservoir pressure of oil reservoirs 
without the need to close the wells. Nevertheless, 
the neural network model has the ability to predict 
current average reservoir pressure accurately using 
previous reservoir production data. Further study 
can proceed to construct the most suitable neural 
network models for other oil fields.
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Table 3. Statistical Parameters of the Proposed Network Model

AAE AARE, % MAARE, %

Training
Validation 
Test
All

16.814
28.23
22.44
18.816

1.792
3.061
2.494
2.033

4.48
5.027
5.416
5.416

Table 4. Statistical Analysis for Prediction Performance

Time wells Model, 
psi

Actual, 
psi AE RAE

6/2007
5/2009

56
56

839.32
830.51

832
820

2.356
1.017

0.287
0.122

Fig. 3. Network performance, training dataset

Fig. 4. Network performance, validation dataset

Fig. 5. Network performance, test dataset

Fig. 6. Prediction of average reservoir pressure.
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