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Estimation of the Error Range of True Vertical Depth Determination
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Abstract: The present paper suggests a spiral type
curve model with two parameters for potential
description of the geometry of deep rotary
drilling. The reasons that borehole geometry
never coincides with a straight line are
enumerated and classified. The length, the
angular deviation of the curve from vertical, and
the Gaussian curvature of the model are analyzed
with the methods of differential geometry. The
curvature is interpreted in a way specific to a
cased hole. Numerical analysis gives an
estimation of true vertical depth error as a
Jfunction of the two independent parameters and
as a function of angular deviation of the hole.
The importance of this estimation is related to
knowledge of the geometry of the oil-water
contact that also serves as reservoir quality
indicator.

* Petroleum Rescarch Centre, P. O. Box 6431, Tripoli, Libya.

INTRODUCTION

Causes of Tilted Hole at Deep Rotary Drilling
and their Classifications

Even when borehole design ( construction)
describes vertical deep well for oil or other industry,
the actual borehole shaft will differ from the perfect
vertical. Full scale modeling of the hole can be
considered as a curve, starting at the point of the
collar (mouth ) of the well and finishing at the point
of the bottom of the hole (shaft). A perfect vertical
hole would mean a vertical straight line from the
mouth of the well to the bottom of the well. Tn this
case, the true vertical depth (TVD) and the length of
the hole are in exact coincidence. In general, the TVD
is the distance between two horizontal planes each
of them intersecting one of the mentioned points. The
actual hole is a real, three dimensional curve between
the two points. The deviation of this curve from a
straight line is the result of a number of technical,
technological causes, on one hand, and of geological
causes on the other hand.

The first group of causes are described!',
Geological causes occur when the boring tool pierces
rocks of changing hardness or tectonic dislocations.
Among other important causes are fault zones, layer
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boundaries, boundaries of concretions, voids, karts
and brachiated zones. In these cases, the tool tends
to traverse along lines of least resistance.
Accordingly, at layer boundaries there is a tendency
for the borehole to tilt towards the normal direction
of the bedding plane. As another example, there is
an increased chance for having stronger deviations
when the hole axis forms a relatively small angle ( 5°
- 30° ) with a steeple dipping hard rock. In these
cases, both the azimuth and the zenith angles of the
borehole inclination may change.

Rich enough material can be found to prove that
by time and by development of drilling technology,
the technical-technological causes of unwanted
deviations have sharply decreased. In contrast,
some of the geological causes of deviations are
difficult to compensate by any sophisticated
technology.

The geological causes can be examined in terms
of their random or systematic character. This can be
done from the perspective of whether or not deviation
of two neighboring holes will be similar. The general
gentle slope of the basin can be expected to cause
systematic deviation, while voids and karts zones are
likely to cause random deviations. However, the
presence of faults is likely to affect the variation in
such a way that the deviations obtained may have
both random and systematic elements at the same
time. _

Importance of the Problem and Possible Different
Approaches to the Solution

The problem of an improved knowledge about
borehole geometry becomes important in some
cases. One such case is when we have a number
of wells crossing hydrocarbon (HC) reservoir and
reaching the water body below the reservoir. In
this case, the exact spatial position of the oil water
contact (OWC) and the capillary transition zone
(CTZ) has a high importance as reservoir rock
quality indicator.

Indeed, the closer this surface is to a horizontal
plane , the better the quality of the reservoir rock.
This reservoir rock quality indicator expresses the
global, overall quality of the reservoir rock in contrast
to core samples having only local validity. Core drilled
rock material represents always only a tiny fraction
of the total reservoir volume.

When an inclination survey has been done in the
hole, the spatial position of the hole can be restored
exactly. Frequently, this survey data is not available.
In this case, knowledge of the magnitude of the
potential true vertical depth error, as a function of

the deviations is of interest. Such relations can be
obtained only by modeling the global geometry of the
hole.

MODEL OF THE DRILLED HOLE ABD
ITS MAJOR PARAMETERS

Spiral Type Curve Model of the Hole Geometry

As the drill bit moves downward, the probability
that the projection of the actual bottom of the hole to
the horizontal surface deviates from the mouth of
the well increases. Here, the geometry of the hole is
modeled in a deterministic, rather then in a stochastic
way. From this, a model is suggested, whereby the
side distance increases linearly with depth. This
requirement prescribes that the hole model curve runs
on the surface of a (narrow) cone. Also, from the
point of view of this deterministic behavior, a
continuous, analytical type of changes in the shape
of the model curve is considered. In this way, the
following definition for the hole model curve is
obtained.

To define a three-dimensional curve in Cartesian
coordinates is to define the r(1) = (x(t); vt} z(1))
vector-scalar function.

For the spiral-type model curve of the hole, #(1)
is given by the following equations:

x(t) = at -cos(bt)
y(t)=at -sin(bt) (1)
zZ(t)=1t

In this curve definition, a special three-dimensional
spiral-type of curve is described, which contains two
parameters @ and 4. Parameter g describes the
cone, the surface of which contains the curve.
Indeed, for any point of the curve, for any ¢ value,

r2(n=x*()+ Y () =(a-1)’

i.e. the distance of the curve from the z-axis is
increasing by ¢ linearly and the coefficient of the grow
(speed) of radius r, is given by parameter a. This
cone is refered to as the supporting cone of curve
(1). The curve is somewhat similar to a helix curve
but the helix curve is contained by a cylinder, rather
than by a conel.

The geometry of the model curve is normalized,
by selecting for the independent ¢ variable of the

curve the limits,
0<¢t<] (2)
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This places the top of the hole at the beginning of
the coordinate system and the bottom of the hole to
the a radius circle around the point (0,0,1) with a z-
direction axis. This means from the borehole
application problem point of view that TVD = 1,
therefore the length unit is TVD itself. One of the
major tasks is to calculate the length of the curve.
The starting and finishing points of the curve given
by (2), give the parameter b a clear meaning.
Measuring the angle in radians and introducing the
definition b=2m- f, f describes the number of
rotations of the curve until it reaches the bottom level.
This number is not necessarily large, and values below
'/, for f (f <.5)allow the examination of a hole
that has a systematic deviation direction in terms of
geography (e.g. to the North). Figure 1 is used to
demonstrate the suggested geometrical model of the
hole. Here, the Cartesian coordinate system is
introduced in an unusual position, but it keeps the
right hand rule. This is to avoid a well sketch
‘deepening’ upward while using vector products of
vectors, as below, without changing the right hand
rule. In figure 1, both parameters @ and b are
exaggerated from values that are relevant for the
borehole model for the purpose of representing their
graphical meanings clearly.

Length, Deviation Values and Curvature of the
Spiral Type Model of the Hole

To calculate the length L, (0,1) of curve (1) of

ﬂ length

variable ¢ , one needs to know the 7
!

element, for which

2 _ é 2 . i}i 2 + E 2
di dt dt €)

relation is valid. After applying equation (3) to curve
(1) i.e. making the calculations for the derivatives
and using the basic properties of the trigonometric
functions; the elementary lengths are integrated in

dr
dat

=Y
il

Fig. 1. Curve model for the geometery of the drilled hole.

interval (2). In this way, the length of the curve (1),
L,,(0,1) is obtained as

|
L,,(01)= j\/(l +a)+albh? 1 di @)
a

integral in equation (4) for any a, b parameters can
be expressed in a closed form by primitive function
only ina complex way and its numerical calculation
is more feasible.

The borehole inclination angle, o¢ in the r(¢)
point of the curve cgp be calculated from the scalar

r

products of vector —~ and z-direction unit vector
(0,0,1). On this basis, the cosine of the inclination
(zenith ) angle ¢ , is calculated from equation (5).

cos(ct) = L !
arl Ja+a*)+a’b -1 (5)
dt

O is a monotone increasing function of f.
Consequently, the smallest inclination angle ¢¢ is at
¢t =0, where this angle is the basic ( half) angle of
the supporting cone ( see Fig 1.). The angle of the
supporting cone can be denoted as " . For this
angle, tg(a"™") = @ and this equation is equivalent
to that of equation (5) for the case ¢ = (). For any
other t >0 the g > g™ relation is valid, and
o™ is reached in equation (5)at y =1 .

From the point of view of hole geometry, a further
property of curve given by equations (1) is its
Gaussian curvature, which is the local limit of angular
(directional) change of the tangent vector of the curve
with respect to the length of the arc. For the spatial
curve r(f) the Gaussian scalar curvature, K(t)
can be calculated on the basis of the formula !

(XOREG)| -
X

where [,] denotes the vector products of the two
vectors in brackets,

For our curve, on the basis of the rule for the
derivation of multiplication of functions, the first and
second derivatives are

r'(t) =(a-cos(bt) =t -ab-sin(bt) ;
a-sin(bt)+¢-ab-cos(bt) ;1)

K(t)=

(7

r”(f)=(_ zab'Sin(bI)—t-ab3 COS(b[) : (8)
2ab-cos(bt)—1-ab® -sin(bt) ; 0)



40 G. Szigeti

Substituting equations {7) and (8) into equation
{6) and after tedious but elementary calculations the
curvature of spiral —type hole model is given as:

@) +(1+4a) BC +dbF ()
[(1+ady+atre],

k(t)=ab

ANALYSIS OF THE CHARACTERISTICS
OF THE HOLE MODEL CURVE

The importance of the curvature described by
equation (9) is that while the hole inclination relates
the actual direction of the hole to an external, vertical
direction, the curvature describes the rate of
directional change from a previous section of the hole.

In our situation for the cased hole, a special
interpretation of this curvature is suggested, which
corresponds to real drilling activity, as follows.
Consider that the hole consists of short, exact straight
sections (intervals) of uniform length jointed to each
other. This arises from the assumption, that the casing
tubes remain straight in the hole, and that the casing
string adjusts its shape to the changing hole geometry
by inclinations at the jointing of the casing tubes.
Figure 2 shows the situation as described. The
common length of the casing tube is denoted by p.
The hole geometry is locally approximated by a
tangent to the curve circle, in the plane of vectors

b
NON

fact that the curvature of a section of a circle is the
reciprocal of the radius of this circle is used®!. The
end points of the p length intervals are supposed to
lie on this approximating circle. For the angle b what
is the angle of inclination of two jointing casing tubes,
using the regular polygon geometry on Fig. 2,
the tangent of /2 can be expressed as a ratio of p/2

r'(f),r''(¢) , and of radius Here, the

1
and —(—) . Forreal holes, one can not expect sharp
K(!

directional changes, consequently the curvature is

small and therefore; p< <+)( unlike that shown
K{{

from the exaggerated Fig. 2) and 7g (3/2) is close
to B/2 .

In this way one derives, as a special interpretation
of the curvature to the cased hole, the relation:

B=px@) (10)

Fig. 2. Interpretation for curvature for cased hole.

As a starting point for analysis of formula (9) for
the curvature, it is worthwhile to study it without the
limits in equation (2). For large ¢ tending to infinity,

k(t) tends to L . This means that the larger the
a-t

variable ¢, the smaller the effect of parameter 5, and

finally, the limit of the curvature is determined by the

horizontal cross section of the supporting cone. For

the case y = (0 however, as direct calculation shows,

parameter # has a large effect on the curvature,

2ab

3

+a

because here i (0) =

For the case with the limits given by equation (2)
for the model of the hole, the major feature of the
curvature derives from the fact that for a vertical
hole the deviation of the bottom of the hole from the
top of the well is much smaller than the depth of the
well. Expressing it with the introduced quantities,
a<<1.Because is limited and also & is not large
in equation (9), all the terms with the multiplier @ are
negligible. Therefore, the denominator of equation
(9) becomes | and one obtains forg << | :

kK()=ab-J4+b’t’ (1

The largest curvature, and therefore according
to equation (10), the largest joint deviation angle 3 is
given by formula (I Datf =1 .

Fora real borehole A1-52 well of the Ghadames
Basin of Libya where complete borehole deviation
survey is available, the following data are known.
The logging depth of the bottom of the hole (BHT)
is 9567 feet, while side deviation of BHT is found to
be 158 feet to the direction given by the azimuth
angle 157° of SSE. This corresponds to a
o™ =.94°.

It should be noted that this direction is almost
perpendicular to the direction of the closure of
outcrop on the geological map of Libya, proving that
in the Ghadames Basin which has a quiet and regular
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structure of sedimentation the borehole is apt to
deviate towards the normal of the bedding planes.

On the basis of the presented model and formulas,
calculations can be made, whereby the possible length
and borehole deviation parameters are calculated.
They are calculated as a function of known or
assumed major, independent parameters of the model
curve of borehole & and b or what is almost the
sameaandf ( b =2m - [ ). The integral in equation
(4) is calculated by eight point Gaussian quadrature
process, with automated selection of subintervals for
integration, which provides the necessary high
accuracy!l in the range of 1(~°. The calculations
are made by appropriate source code developed by
the author and named Hole Geometry for using
Fortran languagel™ .

Table | contains the results of the calculations
for the independent parameter set of a and f, which
are in the range of a typical successfully drilled
vertical hole. The exact meaning of the two input
columns ( Icl1, Ic2) as well as that of the four output
columns (Ocl, Oc2, Oc3, Oc4 ) are written in the
nomenclature type attachment belonging to the Table.
In the Table all the angles are expressed in degrees
(while in all the formulas of this paper angles should
be used in radians), and angle B is calculated with
the parameter p ="/, .

The main column Ocl is calculated from formula
(4) in the above mentioned way and gives the length
of the hole, which can be identified by the logging
depth expressed in the introduced length unit (TVD =
1 ) rather than in the more regular unit feet. For the
parameter range # < < 7 in the case of the absence
of the Fortran program, the following useful
approximations can be derived. From formula (5) for
{ =1 ,expressing fg(0r) by cos(cx) one gets,

. For 1 =0,

all'lilx =a- /'1+b2

, while from formulas
a"" =arc 1g(a™) = a
(10)and (11) BM™ =p.ab-4+b* .

Column Oc4 accounts for the TVD error of a
well of 10000 feet TVD. The calculated TVD
errors are small for the hole of a slight deviation
of 1°,2°% 3° degree compared to the TVD of the
hole. For example for g™ =2% and f=.5,
i.e. for a hole that still has a general, oriented
deviation, the error is 26 feet, which is small. This
error is far from being negligible when the much
more delicate task to determine the geometry of
OWC is considered.

CONCLUSIONS

1. Assuming small anpular deviation of the hole, the
true vertical depth determination error is not
negligible from the point of view of such a

Table 1. Calculated values of the hole model and description
of their meaning

Icl Ie2 Ocl Oc2 Oc3 Oc4
1.0 0.00 1.00015 1.0 0.0 2
1.0 0.25 1.060028 1.9 0.1 3
1.0 0.50 1.00065 3.3 0.2 7
.0 0.75 1.000128 1 4.8 0.5 13
1.0 1.00 1.00215 6.3 0.8 22
1.0 2.00 1.00811 12.3 3.2 81
2.0 0.00 1.00061 2.0 0.0 6
2.0 0.25 1.00111 3.9 0.2 Il
2.0 0.50 1.00261 0.6 0.5 26
2.0 0.75 0.00510 9.5 .0 3l
2.0 [.00 1.00857 12.4 1.7 86
3.0 0.00 1.00137 3.0 0.0 14
3.0 0.25 1.00250 506 0.2 25
3.0 0.50 1.00587 9.8 0.7 59
3.0 0.75 1.01143 14.0 1.4 14
lc = Input column

Oc = Output column

lel  angle 2 °, degree  Angle of the supporting

cone, !g(a"””) =g

rotation  Rotation number of the
hole around its axes. b =27 - f

Ic2 number f

Ocl length L, (0.1) unit Length of the hole, while
true vertical depth of the
bottom of the hole is |
length unit ( formula

#))

° degree Maximum devialion
of the hole from vertical
(formula () at f =1)

max

Oc2  angle o

Oc3  angle o ° degree Maximum angle of
casing joints. calculated

from the maximum hole
curvature with the casing

length parameter,

P=%0 (formula (9)
and (IO at 1 =1)

Absolute error of true
vertical depth
determination for a well
of 10.000 [eet

Ocd4  abserr. Az feet
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demanding task like OWC determination and
reservoir scale reservoir rock characterization.
True vertical depth determination can be fully
established only by using borehole deviation
survey.

In case of having well established geological,
petrophysical criteria, this criteria should be
enhanced over seemingly exact depth data.

REFERENCES

Maximov A., Miloserdina G., Ermin N., 1973. Short
Course of Geological Prospecting and Exploration.
Mir Publisher, Moscow ( in English)

[7]

Brantly J. E., 1971. History of Oil Well Drilling. Gulf
Publishing Company.

Gray A., 1997. The Helix and its Generalization, par.
8.3, pp. 198-200 in Modern Differential Geometry.
CRC Press, Boca Roton, FL.

Prohorov I.V., 1988. Mathematical Encyclopedia.
Soviet Encyclopedia, Moscow ( in Russian)
Borowski E. J., .M., Borwein J.M., 1989. Dictionary
of Mathematics. Harper Collins Publishers.
Dmitriev V. L., 1982. Numerical Mathematics and
Computers in Geophysical Exploration. Paragraph
20. Publisher ‘Nedra’, Moscow. ( in Russian)
Microsoft Corporation, 1993. Fortran Power Station,
Language Guide.





