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Naturally Fractured Reservoirs — Modeling and Simulation Methods

Leonhard Ganzer* and Diethard Kratzer**

BlSlace g Asadal ok — Lk 488504 (alSa

RS ¢ 8 3 )l gl

o B A o (g g llag Adad alSasie 8 Lanla 150 cla o (b G el ClERED Caals
il e Aakia GelSal) alina o e o 3l Sy 4l el CilSud el o gl o 2 dail
B el A 520e0e Gk 50 puia ge AdBTAY palSall CuilS 28 clglaiad aé oy jlaill Lghenl

A ) B ) gemrg S A g g A8 Aylads (1alSe At A8y yha py gy Mad) poda sl o 5 48 )50 238 J plais
G2 dadad b ax AT S g A (palSal AS jatia y dpalia dndais 43Sl dadal dlae 4 A @l ki e
Sl 3l8ae Jlae (ABaas & glat a5 sl A 00 Jeadl jau 8 23S Do sl

OalSe 3lSlae (5 5k Baal Llaill Bale) ot Jomiall 5 g 53 el (peall 31SLa0 g ilal Ayl gl Ay dia gy

AR A g1 S 5

i o gl da 5 el Apaliaall 23 5a0 Y JET A 28 lle paa dand je (ge ladi (3 5k 500 D38l s

faaal

Bllaa rilai 5 Adiiia 403 z3lad (3185 S1 Aaliall aliadll JS (e Cila sheall zed Gpan il delia cul gla
) gl Cudiadl 5 |y Lalaial 45 alia BlSLae - 3lad (e dpe jpuadl Cila slaall g Gigaa Ui g cdliaia g da 53 3a
Jaladl Gl BN IS tres ae Jalatl Lgihand g0 ¢Sy Y0l el 430 4 jaY)

el sal JS ol il ey 18 15 glal) a8 s gl Cuny Ll 3850 (palSae (e B3 3nn (3l 6 (5582l a5
A g0 je g Aliaio g Mei} Badna (3000 Aallaa s Y (aSall 7 dlad

oo i Ladie A 53 o b yalionn 4805 coleUall  lAY 2 g ANEQN o288 Lgapadi &5 A1 (5 sdall anl Cima
Za A4l o Cum ey z 0 e aiiee igal (il Y1 8 e Blhyg el 1360 o sl sl 73 sl

o sl o gl 4 e Ui e Ay ginall 38l

Abstract: Natural or induced fractures play a
crucial role in many petroleum reservoirs. Even
though only a small percentage of today’s
reservoir models explicitly describe the fractiures
or the fracture networks, one may claim that
practically most petroleum reservoirs are
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Sfractured. Due to their complexity, but also due
to their commercial significance, naturally
fractured reservoirs have been the subject to
extensive studies during the past decades.

This paper will try to assess the current
situation and methodology for modeling fractured
reservoirs. Its main focus will be on recent
developments in static and dynamic flow modeling
of fractured reservoirs. Especially the latest
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evolution in static modeling software capabilities
significantly affected past, historical workflows
and initiated new developments in the reservoir
simulation area.

Starting from the historical evolution of dual
continman reservoir simulation models, a review
is given on various simulation approaches for
fractured hydrocarbon reservoirs. Several
methods will be discussed, starting from
conventional formulations to the traditional dual
porosity model, to discrete fracture network
models. All formulations have their own
advantages, but have deficiencies in describing
some other specifics of fractured reservoirs.

Recently, the petrolewm industry tries to
integrate information from all possible sources
to generate fracture network models and dual
continuum simulation models. Most recently, the
integration of seismic data into dynamic

simulation models has received a great deal of

attention. Also, latest developinents in the gridding
technology raised hopes to be able to cope with
Sull permeability tensors in the near future.

In many naturally fractured reservoirs, the
fractures are found in limited zones, so called
“sweet spots” only. Consequently, not all parts
of the reservoir models will typically require
explicit fracture treatment with dual continuum
models.

One of the methods presented in this paper
allows automatic generation of dual continuwm
grid blocks wherever the attributes of the
geological model suggests to do so. This approach
is called adaptive dual continuum model and it
results in simulation models that contain grids that
resemble the real geological situation very closely.

INTRODUCTION

Many petroleum reservoirs are {ractured or at
least partially fractured. Hence, one of the first
questions to be raised is whether or not existing
fractures are important for the reservoir behavior
under producing conditions. In other words, what is
the contribution of the flow in fractures to the overall
fluid flow?

Posing this question to a petrophysicist, to a
geologist or to an engineer, one can expect different
views and answers. As far as the reservoir engineer
is concerned, only fractures and fracture networks
that affect fluid transportation to and from the wells

are of significance. Only when there are fractures
with sufficient length of penetration through the
reservoir rock, fractures that are interconnected and
with sufficient density or spacing, their effects can
be observed and measured under dynamic flow
conditions.

To assess fracture contributions accurately, a wide
range of geological, petrophysical and engineering
methods are applied. These methods apply to a large
variety of different scales.

The paper will give a brief introduction to multi-
continua approaches for madeling fluid flow in porous
media. Then, a brief discussion of modeling
approaches for naturally fractured reservoirs in static
models is given, followed by an overview of available
simulation and modeling approaches for fluid flow
simulation. This will lead to the definition of a new
and flexible method, referred to as the adaptive dual
continuum method.

The adaptive dual continuum method can be
applied to a large variety of cases. As will be shown
in the paper, the approach is especially advantageous
if the reservoir appears to be partially fractured, i.e.
not all areas and regions of the reservoir (different
lithologies, facies, aquifer region, erc.) contain active
fracture networks.

THE MULTI-CONTINUA APPROACH

In the context of this paper, the void space in a
fractured porous media is composed of two parts:
(1) a network of fractures and (2) blocks of porous
medium (called matrix). In principle, the mathematical
model that describes the fluid flow through this void
space of the porous medium can be stated for every
point in the domain. This model would represent a
description at the microscopic level, which we cannot
solve-directly, due to missing information at this
detailed level. Therefore, a complete description of
the fluid transport problem at the microscopic level
is not possible.

We have to transform the problem from the
microscopic level to a macroscopic level at which
the problem is formulated in terms of averages. The
average values are measurable quantities. This is
referred to as the continuum approach.

In the continuum approach, the physical domain
is replaced by a model in which each component (or
phase) acts as a continuum that fills up the entire
domain. For every point, average values of
component and phase properties are taken over an
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elementary volume. Those averages represent the
macroscopic values of the considered variables. By
moving the elementary volume throughout the entire
porous medium domain, we obtain averaged values
for all variables that are differentiable functions of
time and space.

In the case of porous matrix and fractures, it is
possible to classify the various problems related to
the scale P!

Zone 1: The very near field. Interest is focused
on fluid flow and contaminant transport within a single,
well-defined fracture.

Zone 2: The near field. Flow is considered in a
small domain, which contains a small number of
fractures. The location and shape of the individual
fractures must be known. However, the definition of
the fractures may be statistical.

Zone 3: The far field. Here transport may be
visualized as taking place simultaneously, in two
overlapping continua. One composed of the fluid
within the network of fractures, and the other
involving the fluid within the porous blocks. Mass
may be exchanged between the two continua.

Zone 4: The very far field. The fluid in the entire
fractured porous medium may be regarded as a single
continuum.

Local problems such as transport near sources
and sinks or a single fracture intersecting a well are
represented as a problem of the very near field (Zone
1). A reservoir simulation model could use a single
continuum method with very fine grids to explicitly
model the fracture. Note that a very detailed
knowledge about the fracture is required (length,
aperture, orientation). No specialized reservoir
simulation models exist to simulate this very near field
of naturally fractured reservoirs. Of course, very fine
gridded models may be used to accomplish this level
of detail.

If the domain of interest is larger (but insufficient
for the application of the continuum method), we can
construct a near field model (Zone 2) that requires
information on every individual fracture. In most
cases, information on the fractures is only available
in the form of statistics (aperture, length, orientation,
spacing, efc.) and we can construct different
realizations of the domain and study their behavior.
In the simulation context, the discrete fracture
network (DFN) models ® "% consider this approach.
The method is based on explicit modeling of fractures
that are represented as planes or disks. It requires
very detailed descriptions of the network and uses
single-phase models to simulate the behavior under

fluid flow. However, these statistically based models
are not practical when considering fluid flow over
large domains and fracture networks, as the inclusion
of the total number of fractures in field-scale
demands large amounts of input data and computer
storage. In addition, the flow simulation on those
models is generally performed under single-phase
conditions and those models also lack comprehensive
description of matrix-fracture fluid transfer. Large,
field-scale domains are usually better handled by the
far and very far field models described below.

For larger scale problems, the dual continua
approach for the far field (Zone 3) may be used.
The original concept as proposed by Barenblatt and
Zheltov¥"! and Barenblatt er a/* is also known as the
dual porosity model. In this conceptual model two
co-located, but interacting, media represent the porous
and fractured medium:

(I) The fractured network and

(IT) The porous matrix.

Each is represented by a grid system covering
the entire domain. Interaction between the two
systems is accomplished by a transfer term that
defines the fluid transport between fracture and
matrix rock. This type of approach is commonly
applied for the simulation of multi-phase fluid flow in
naturally fractured reservoirs (Fig. 1).

The interconnected fracture network is
represented by a grid system that is co-located with
another grid system that represents the intergranular
pore space (matrix). Usually, the matrix provides the
majority of pore space and storage capacity, but only
very limited conductivity. In the idealized dual porosity
models, the matrix blocks are treated as sources (or
sinks) to the fractures. The network of fractures
represented by the fracture grid system provides the
major fluid flow conduit and limited storage capacity.

If very large distances (and travel times) are
involved, we can use the very far field model (Zone
4) in which we regard the entire domain as a single

Classic Warren and
Root fracture
System model

Geological model of
matrix and fractures

Fig. 1. Idealized grid block representation of naturally fractured
rock by a dual porosity madel (from Warren and Root, 1963)§
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continuum. This kind of model is applicable in cases
where the system allows sufficient interaction
between the fluids in the fractures and in the matrix
such that there exists a local equilibrium at every
point.

CLASSIFICATION OF NATURALLY
FRACTURED RESERVOIRS

For the purpose of reservoir simulation, the
classification of naturally fractured reservoirs after
Nelson """ or modifications of it""*! are used most
commonly.

This classification defines the following types of
fractured reservoirs:

Type 1: Fractures provide the essential porosity
and permeability (Fig. 2)

Type 2: Fractures provide the essential
permeability (Fig. 3)

Type 3: Fractures provide permeability assistance
to an already producing reservoir (Fig. 3)

In the first case of fractured reservoirs (Type 1),
all producible hydrocarbon fluid volumes reside within
the fractures. Therefore, this type of fractured
reservoirs requires the accurate calculation of
fracture porosity, fracture width and fracture spacing.
The estimation of these properties will predict
whether initial flow rates can be maintained or will
drop rapidly within short time after production starts.
For this reservoir type, the definition of the fracture
network is the decisive factor, whereas the definition
of the rock matrix plays a minor role and the

Fig. 3. Idealized representation of type 2 (left) and type 3
(right) reservoirs.

application of a dual porosity approach must be
questioned.

For fractured reservoirs of Types 2 and 3, where
the main storage volume resides within the matrix
rock volume, early knowledge of matrix-fracture
interaction is extremely important. It will determine
how efficiently the matrix can be drained by the
fracture system. The accurate determination of the
fracture porosity will be of less significance in those
cases. Usually, a conventional modeling approach will
fail for these types of fractured reservoirs, because
it is impossible to generate average properties that
represent the combined effects of fracture and matrix
fluid flow. In most cases, those reservoirs will require
explicit modeling of the two continua, matrix and
fractures, with distinct property sets.

For all fractured reservoir types, the
investigation of fracture orientation will be
important in order to capture preferred flow
directions. Fracturing may be caused from many
possible reasons, but in the end will always
represent the stress field of the reservoir and some
rock failure associated to this stress.

SPATIAL DISTRIBUTION OF FRACTURES

Since, in most environments, the rock properties
vary with location, we should expect the fracturing
to do the same. Therefore, the majority of naturally
fractured reservoirs will show areas with high
fracture intensity just as there will exist areas that
indicate no fracturing at all.

It is very likely that the static reservoir model
(geological model) can account for the spatial
distribution of the fractures and can identify areas
with high and low fracture density. Most software
packages in this context can relate fracturing to
structural elements, lithology or facies types due to
the amount and type of data input.

Unfortunately, most dynamic models (simulation
models) do not account for the spatial distribution of
fractures explicitly. Instead, the dual porosity mode
in practically all reservoir simulators operates like a
general switch that can be turned on or off. The main
problem is that the implementation of dual porosity
(or dual permeability) models into reservoir simulators
was not appropriately done as true function of
location, but as general switch acting globally on the
simulation model. This is in conflict with the fracture
intensity that most likely appears to be a function of
location.



Naturally Fractured Reservoirs — Modeling and Simulation Methods 73

SIMULATION APPROACHES FOR
FRACTURED RESERVOIRS

The section will discuss various approaches for
the simulation of fluid flow in naturally fractured
reservoirs. All methods have their advantages, but
have deficiencies in some other specific areas of
describing the physics of fluid flow in fractured
TEServoirs.

The last method presented in this paper allows
automatic generation of dual continuum grid blocks
wherever the attributes of the geological model
suggest doing so. This approach is called adaptive
dual continuum model and it results in simulation
models that contain grids that resemble the real
geological situation very closely.

DISCRETE FRACTURE NETWORK (DFN)
MODELS

Discrete fracture network (DFN) models were
developed to describe primarily the fracture
networks. They are among the models developed
most recently. Their focus is on fracture properties
and not so much on the description of the rocks’
matrix properties. Discrete fracture networks model
the fractures as discrete features represented by
planes or disks as shown in Figure 4. Contrary to
other methods described in this paper, the DFN models
require accurate descriptions of the fracture set and
its properties. This makes them not very attractive
for full field simulation.

50005100
081047364003
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Fig. 4. Discrete fracture network model"?

The DFN method can be considered a method of
the near field or Zone 2. See the discussion on near
field models (or Zone 2 models) above. In addition,
these models typically perform single-phase
calculations and are instructive to obtain fracture
properties'®!'" One field of application of these DFN
models is the pre-processing or upscaling of fracture
information for dual continuum simulation®!,

However, DFN models are very powerful for
visualizing the fracture networks. Generally, the DFN
approach could be the preferred method for the
simulation of fractured reservoirs that are classified
as Type | according to Nelson??, whereas their
application is limited for reservoirs of Types 2 and 3.

The remainder of this paper describes another
group of models that includes the traditional reservoir
simulation approaches, where the reservoir is
discretized into one rock continuum (single porosity)
or two continua (dual porosity/dual permeability
models) as first described by Barenblatt, Zheltov and
Kochinall.

SINGLE POROSITY MODELS

Of course, the ‘conventional® single continuum
simulation approach can be used for modeling
fractured reservoirs under certain circumstances.

For example, single porosity methods are
frequently used to generate fine grid models in order
to investigate matrix-fracture communication on small
scale. These high-resolution models are useful for
developing generalized matrix-fracture transfer
functions that can later on be applied to the field-
scale reservoir model. In general, however, they
cannot be used for the simulation of the entire
reservoir.

One exception may be the fractured reservoirs
of Type 1 following the classification by R. Nelson?,
where the fractures provide the main porosity and
permeability for the reservoir (i.e. they provide the
storage volume and the flow paths). In those cases,
the single porosity approach may be sufficient to
capture the flow behavior of the fracture network.

However, it may be difficult to capture the
preferred flow directions, especially when the
permeability field (tensor) changes with location and
whenk . andk__cannotbe aligned with the principal
co-ordinate directions.

The kPEBI grid proposed by Heinemann er al.#"l
may be more flexible and powerful to capture those
preferential flow directions. However, there are some
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limitations with respect to the properties of the
permeability tensor that must be considered when
constructing a kPEBI grid in the 2D domain (Fig. 5).

An alternative modeling approach that uses a
single porosity model is discussed by Saidil'®'" In
his model, the entire reservoir domain is divided into
sectors. Those sectors represent also fractures with
infinite transmissibility. The sectors are connected
with each other. Each sector may contain several
rock types that are represented by cylindrical matrix
blocks. The fracture pressure and the fluid phase
contacts provide the boundary conditions. This model
can be considered a special case of the sub domain
method of dual porosity models, but does not rely on
the concept of shape factors. Saidi claims that this
method allows proper handling of block-to-block
interaction and re-imbibition processes.

=5 |
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Fig. 5. kPEBI grid for single porosity modeling of fractured
FEServoirs!

DUAL POROSITY/DUAL PERMEABILITY
MODELS

This class of simulation models describes the dual
media models that have been introduced by
Barenblatt and Zheltov® in 1960 and by Warren and
Root1,

In the original publication, the calculation of matrix
block pressures assumed no flow between matrix
blocks by neglecting matrix permeability. The matrix
permeability was only considered in the fluid flow
calculation between matrix and fractures. This model
is usually named a dual porosity model. It contains a
continuous primary medium, the fracture grid system
that provides the main flow paths with high

permeabilities, but typically low storage volume. The
second medium is the matrix rock that is considered
non-continuous and acts as a source term for the
adjacent fractures. Figure 6 shows an idealized
representation of the connections of two grid systems.
Only for conceptual purposes, the two grid systems
are shown at different locations. In fact, they are
co-located.

In other words, the fractures are the boundaries
of the matrix blocks. The fracture grid system is truly
continuous (indicated by the black arrows between
neighboring fracture grid blocks). The matrix grid
system in a dual porosity approach has only
connections into the fracture system (indicated by
the red arrows). Therefore, the matrix grid system
is considered discontinuous. Hence, the number of
neighbors of the matrix grid block is always one,
which is the fracture grid block that surrounds the
matrix block. The total number of neighbors for the
fracture grid block in a dual porosity model is equal
to the total number of fracture neighbors defined by
the geometry plus one block, which represents the
matrix grid block that is in communication with the
fracture grid block (Fig. 6).

Furthermore, the rock matrix in each grid block is
idealized as a system of regularly shaped blocks
(sugar cubes, see Fig. 1) that are not discretized
individually. Instead, all matrix blocks in a grid block
are represented by a single grid node, which holds
some average value for the variables (pressure,
saturations, etc.) of all matrix blocks.

The connection between matrix and fracture
continuum that is indicated by the red arrows in Figure
6 is defined by a matrix-fracture transfer term that is
discussed below. This transfer function is decisive
for the performance of the dual porosity model. Its
proper definition is vital to the success of any
fractured reservoir simulation study using this type
of approach. In particular the recovery processes
imbibition, gravity drainage and capillary effects of
the matrix blocks have received much attention. The
dual porosity concept was extended to multi-phase
flow#?! and later refined to be capable of handling
different recovery processes occurring in fractured
reservoirs!™?!

T T i i
'.v)"’i‘ ,‘"\ : ?;, _ Matrix
P R '3 (Discontinuous)
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Fig. 6. Grid block connections in a dual porosity model.
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When the discontinuous matrix grid system of the
dual porosity model is transferred into a continuous
grid system by adding the matrix-to-matrix
connections, the model is referred to as dual
permeability system (Fig. 7). In this case, two co-
located media exist and both are continuous. The
matrix blocks are no longer isolated, and contribute
to the overall fluid flow.

The matrix-to-matrix grid block connections
introduce capillary continuity through connected
matrix blocks. This may have a significant impact on
the recovery for a stack of matrix blocks. It appears
that the dual permeability model captures this natural
behavior better than the dual porosity model,

However, the dual permeability model comes with
additional cost in terms of computation efforts. In a
dual porosity model it is possible to pre-eliminate all
matrix unknowns from the equation system, thus
reducing the size of the Jacobian matrix equal to the
size resulting from a model in a conventional single
porosity formulation. This pre-elimination step is not
possible for dual permeability models, resulting in
equation systems that are twice as large in size
compared to the size of the linear equation system
resulting from an equivalent dual porosity model,

BALANCE EQUATIONS IN DUAL
POROSITY AND DUAL PERMEABILITY
MODELS

The fluid flow equations discussed in the following
are based on a general purpose, compositional
formulation, and can be applied to flow processes
ranging from single-phase to three phases black-oil
cases, or compositional cases using a cubic equation
of state with n components.

The formulation of the mass balance equations
follows the classical dual porosity/dual permeability
approaches with a matrix-fracture transfer term ¢y
that is dependent on ¢ , referred to as the shape
factor.

First, let us look at a grid block in a conventional
(single porosity) model. Then, the molar balance

» Matrix
(Continuous)

—* Fracture

Fig. 7. Grid block connections in a dual perimeability model.

equation for a component ¢ in a grid block i is given
by Eq. 1.
ir{i (r:-"zr'op )Tl(q’r-‘ - (pf- )M:I‘% i_l‘{'”‘pr"ﬂ' )m = %A'[ﬂi (S:- Dy, )} ( 1)
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Where
N is the number of neighbors
is the inter-block transmissibility between i
and j
X, is the mole fraction of component ¢ in phase
P
is the phase mobility
is the specific phase mole density
is the phase potential

q, is the phase production or injection rate
V. is the block volume of grid block i

At is the time step length

¢ is the porosity

S, is the phase saturation

This equation is valid as long as the grid is
orthogonal, i.e. the line connecting grid blocks { and j
is perpendicular to the communicating surfaces
between those two grid blocks.

One equation of this type is defined for each
component in the reservoir fluid model. Together with
other constraints, functions and equations these molar
balance equations will yield the linear equation
system. The linear equation system is then solved
with IMPES, fully implicit or adaptive implicit mode.

In the simulation of fractured reservoirs by dual
continuum models (dual porosity or dual permeability)
one assumes the existence of two co-located continua,
namely matrix and fractures. Eq. 2 defines the molar
balance equation for a component ¢ in a fracture
block.

SelShoan e, -0,) [+ S0 e :%;A,[ﬁg(&ﬂm }] )
It is worth noting that the sum over the neighbors
for the flow term is only over all neighbors in the
fracture-grid system. The neighborhood connection
to the second continuum (the matrix neighbor) is
treated in a special transfer term q"* * defined
below.
Similarly, for a component ¢ in a matrix block, the
balance equation is given by
S |Sk40) 0, -0,)" +il(ff,ﬂ,',\)mfrr.";ﬁ=%A.[¢E(S,D,rp )] 3)

ol

The only difference between Egs. 2 and 3 when
compared to the molar balance equation of a single
porosity block (Eq. 1) is the additional matrix-fracture
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transfertermq” * ! . The matrix-fracture transfer term
is (by convention) added to the fracture system (Eq. 2)
and subtracted from the matrix system (Eq. 3).

The formulae above are valid, if both grid systems
are continuous. This is the case for a dual permeability
model, but not in the case of the dual porosity model.
In the dual porosity model the matrix blocks act as
source terms to the fracture system, but have no
matrix-matrix connections (compare Fig. 6).

In a dual porosity model, the matrix grid block
has no neighbors in the matrix grid system (it is a
discontinuous system) and hence the entire flow term
within the matrix grid can be disregarded.

If this is the case, then the equation for the matrix
blocks (Eq. 3) simplifies (assuming that no well is
perforated in the non-continuous matrix grid system) to

it =tz lof )] “

because and . Eq. 4 shows why it is possible to
eliminate all matrix unknowns from the equation
system in a dual porosity system, thus reducing the
size of the Jacobian matrix basically to the size of a
conventional single porosity model. Of course, this is
not possible for dual permeability models, which result
in fully coupled and large sized coefficient matrices.
Additional CPU time is required to solve those linear
systems that stem from dual permeability simulation
models when compared to their dual porosity
equivalents.

The matrix fracture transfer term is based on the
formulation proposed by Kazemif?, following Darcys
law. Thus, the total matrix-fracture transfer term
(including the molecular diffusion rate) for a
component ¢ is given by

0 =n Sl d, D, -0, ) v (5)

Here, the matrix-fracture transmissibility is
defined to be

r, =Vke (6)

where it is not very obvious what the value for
the permeability in this equation should be.

Many attempts have been made in the past to
define the shape factor, the classical formula still being

ot} G

where C is a constant and varies widely (see for
example Table 1 in Boubiaux ef al.®'), but typically
1s between 4 and 12 and I‘, !y and 1 are the matrix
block dimensions.

Usually, the shape factor is multiplied by

A=
|

permeability and volume of the matrix grid block to
yield the matrix-fracture transmissibility (Eg. 6).
This approach fails, however, when the
permeability in the three co-ordinate directions is
different. For this reason, we suggest the inclusion
of the permeability, &, into the shape factor and use

[L;;] (8)

ifl., 1 and 1_are the matrix block dimentions.

Usmg Eq. 8 allows the application of Eq. 9 to
calculate the matrix-fracture transmissibility. Then,
the matrix-fracture transmissibility must be calculated
from

r;=Ve (9)

which can be considered superior to Eq. 6.
Experience shows that during history matching the
transmissibility defined in Eqs. 6 or 9 needs to be
modified. Hence, the following equation is used:

1, =FVe (10)

Where F'is a history matching parameter.

Nomenclature

=  Phase molar density

Permeability

Matrix element dimensions

Phase saturation

Block volume

Molar fraction of component ¢ in phase p
Inter-block transmissibility between block
iandj

=  Phase mobility

Phase potential

Time step length

Porosity

=  Shape factor
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ADAPTIVE DUAL CONTINUUM METHOD

Not all parts of a fractured reservoir will typically
require dual porosity/dual permeability treatment. Let
us assume that the spatial distribution of the fractures
is given by Figure 8. The different colors indicate
different fracture intensity. Blue indicates no
fracturing, green intermediate fracture intensity and
red indicates high fracture intensity.

The adaptive dual continuum method takes this
aspect into consideration®!. It allows creating dual
porosity/dual permeability cells adapted to user-
defined conditions, grid block properties are based
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Fig. 8. Spatial distribution of fractures indicated by fracture
intensity.

on geological attributes (facies, rock type, fracture
intensity, etc.). Dual continuum cells are created only
at locations, where those conditions are fulfilled,
elsewhere — the unfractured part of the reservoir
model — the grid blocks remain conventional single
porosity cells. Hence the name adaptive dual
continuum method.

Symbolically, the matrix grid blocks are shown in
the center, surrounded by the fracture grid blocks.
Note, that in fact, both grid systems (matrix and
fracture system) are co-located, i.e. at the same
location. (Fig. 9).

The standard dual continuum method (dual
porosity/dual permeability models) generates dual
continuum cells in the entire domain, as shown in left
hand side of Figure 9. This means that dual porosity
cells are created, even if there should be no fractures
in a large portion of the reservoir volume. At times,
this will create an excessive amount of additional grid
blocks that should not exist in the simulation model.
Those grid cells will waste resources of CPU time
and computer storage. They may also lead to
erroneous simulation results or stability problems
during the solution process.

The simulator SURE™"*! using the adaptive dual
continuum method, is able to generate dual porosity
blocks where the fracture intensity is larger than a
given threshold value and will convert the single
porosity grid block accordingly into a matrix-fracture
grid block pair. This is shown at the right hand side in
Figure 9.

The dual continuum blocks are generated
automatically, if the fracture indicator is available in
the simulation model. After this gridding step has been
completed, the model contains matrix-fracture grid
block pairs only, where the geological model indicates
fracturing.

Fig. 9. Modeling naturally fractured reservoirs by standard dual
continuum (left) and adaptive dual continuum method (right).

Any block in the simulation model can be set to
dual porosity/permeability mode automatically or
interactively, if necessary. There are no limitations
with regards to any of the other modeling capabilities
(like fault modeling or local grid refinement) as a result
of those gridding steps. All properties are stored on a
cell-by-cell basis and can be modified, correlated or
assigned interactively. The shape factors are typically
loaded directly from the 3D geological model and
assigned to each individual matrix block. However,
if requested, it is also possible to correlate shape
factors based on matrixblock dimensions 1 1 andl.
Those matrixblock dimensions can be loaded and
assigned from maps or geological models and are
stored also on block-by-block basis.

The advantages of the adaptive dual continuum
method are the following:

e The simulation grid can resemble the geological
situation more closely.

e The user flexibility and modeling capabilities are
maximized through the advanced gridding processing.

e All fracture properties are stored on a cell-by-
cell basis (including the matrix-fracture exchange
parameter, “shape-factor”).
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e The CPU-time and memory requirements for
the simulation run are minimized.

Application of Adaptive Dual Continuum
Method

The methodology described above has been
applied successfully to simulation models running in
two-phase gas-water mode, three-phase black-oil
mode and ® API models.

Figures 10 and 11 shows a typical application of
the adaptive dual continuum method. Figure 10
displays one of the layers including faults and some
local grid refinements located at the center of the
model. Figure 11 displays a cross section through the
model and the different fracturing in the various layers
can be observed easily. Layers 2 and 3 are vertically
refined in some parts and also the local grid
refinement can be seen.

The example shown is the adaptive dual porosity
model of a faulted and fractured undersaturated oil
reservoir. Note that the fracturing varies with facies
and rock types, therefore, a large number of blocks
in the model are not fractured and modeled as single
porosity blocks.

The fractured areas of the model are using the
dual porosity formulation. The total model contains
18368 grid blocks in seven layers, from which 5978
are single porosity blocks, 6195 blocks are fracture,
and 6195 are matrix blocks.

Unlike the application shown above, the following
example shows how to model a reservoir, where the
fracturing is associated with faulting. Figure 12 shows
a model with slanted faults, where the fractures are
only modeled if the grid blocks are close to a fault.
The grid construction follows the PEBI grid
construction principles and is fully automated.
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Fig. 1 1. Cross section through adaptive dual continuum reservoir
model.
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to fault parameter.
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SUMMARY

This paper discusses the current situation and
methodology for medeling and fluid flow simulation
of naturally fractured reservoirs. Starting from the
multi-continua approach different methods for
different scales of models are discussed.

Natural fractures are not distributed evenly
throughout the reservoir domain. Static models are
very well suited to capture those spatial distributions.

Among the simulation models, the application of
discrete fracture networks is discussed first. The
strength of DFN models lies in the description of the
connected fracture networks. Unfortunately, those
models require very accurate descriptions of the
fracture set and its properties. This makes them not
very attractive for full field simulation. However,
DFN models are very powerful for visualizing the
fracture networks. One field of application of these
DFN models is the pre-processing or upscaling of
fracture information for dual continuum simulation,
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Secondly, the application of single porosity and
dual continuum methods is discussed. Single porosity
models can be applied to fractured reservoirs under
certain circumstances. A new gridding method,
referred to as kPEBI grid, may also improve the
potential application of single porosity models to
special types of fractured reservoirs.

Dual porosity and dual permeability models are
commonly applied to simulate the fluid flow in naturally
fractured reservoirs. The differences between the
dual porosity and the dual permeability models are
discussed and the balance equations outlined.

In many naturally fractured reservoirs, the
fractures are found in limited zones, so called “sweet
spots” only. Consequently not all parts of the reservoir
models will typically require explicit fracture
treatment with dual continuum models. The last
method presented in this paper allows automatic
generation of dual continuum grid blocks wherever
the attributes of the geological model suggest doing
so. This approach is referred to as adaptive dual
continuum model. The adaptive dual continuum
method results in simulation models that contain grids
that resemble the real geological situation very closely.
Just like the static fracture characterization methods,
the adaptive dual continuum method generates
simulation models that represent the spatial
distribution of fractures.

The adaptive dual continuum method was
implemented in the reservoir simulator SURE.
Experience shows that performance and flexibility
of this approach are clearly superior to all other
methods discussed in the literature. The method is
especially powerful when the simulation model is
based on a 3D geological model for fracture
characterization.
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